{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Aprendizagem de máquina\n", "\n", "### Objetivos\n", "\n", " - Praticar os algoritmos de clusterização" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Análise de crédito do cartão de credito\n", "\n", "Realizar uma análise exploratória na base de dados de clientes afim de categorizar a quantidade de perfis" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Importa libs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "from sklearn.cluster import KMeans\n", "from sklearn.preprocessing import StandardScaler" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Importa dataset" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | ID | \n", "LIMIT_BAL | \n", "SEX | \n", "EDUCATION | \n", "MARRIAGE | \n", "AGE | \n", "PAY_0 | \n", "PAY_2 | \n", "PAY_3 | \n", "PAY_4 | \n", "... | \n", "BILL_AMT4 | \n", "BILL_AMT5 | \n", "BILL_AMT6 | \n", "PAY_AMT1 | \n", "PAY_AMT2 | \n", "PAY_AMT3 | \n", "PAY_AMT4 | \n", "PAY_AMT5 | \n", "PAY_AMT6 | \n", "default payment next month | \n", "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", "1 | \n", "20000 | \n", "2 | \n", "2 | \n", "1 | \n", "24 | \n", "2 | \n", "2 | \n", "-1 | \n", "-1 | \n", "... | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "689 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "1 | \n", "
1 | \n", "2 | \n", "120000 | \n", "2 | \n", "2 | \n", "2 | \n", "26 | \n", "-1 | \n", "2 | \n", "0 | \n", "0 | \n", "... | \n", "3272 | \n", "3455 | \n", "3261 | \n", "0 | \n", "1000 | \n", "1000 | \n", "1000 | \n", "0 | \n", "2000 | \n", "1 | \n", "
2 | \n", "3 | \n", "90000 | \n", "2 | \n", "2 | \n", "2 | \n", "34 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "14331 | \n", "14948 | \n", "15549 | \n", "1518 | \n", "1500 | \n", "1000 | \n", "1000 | \n", "1000 | \n", "5000 | \n", "0 | \n", "
3 | \n", "4 | \n", "50000 | \n", "2 | \n", "2 | \n", "1 | \n", "37 | \n", "0 | \n", "0 | \n", "0 | \n", "0 | \n", "... | \n", "28314 | \n", "28959 | \n", "29547 | \n", "2000 | \n", "2019 | \n", "1200 | \n", "1100 | \n", "1069 | \n", "1000 | \n", "0 | \n", "
4 | \n", "5 | \n", "50000 | \n", "1 | \n", "2 | \n", "1 | \n", "57 | \n", "-1 | \n", "0 | \n", "-1 | \n", "0 | \n", "... | \n", "20940 | \n", "19146 | \n", "19131 | \n", "2000 | \n", "36681 | \n", "10000 | \n", "9000 | \n", "689 | \n", "679 | \n", "0 | \n", "
5 rows × 25 columns
\n", "