{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Aprendizagem de máquina\n", "\n", "### Objetivos\n", "\n", " - continuação de aprendizado não supervisionado\n", " - Apresentar uma intuição dos algoritimos de agupamento por densidade - DBScan\n", " - Apresentar uma intuição e praticar o algoritimo de agrupamento hierarquico - AGNES" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Métodos de agrupamento\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### De forma geral as estratégias de agrupamento são:\n", "\n", " - Partição: exemplo KMeans\n", " - Densidade: exemplo DBSCAN\n", " - Hierarquicas: exemplo AGNES\n", " \n", "Utilizamos a ferramenta `orange-canvas` para obter uma intuição sobre esses algoritimos além de compreender suas principais diferença." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Desafio 1 (Sugestão)\n", "\n", "Faça a instalação do `orange-canvas` em sua maquina e realize os exemplos dados em sala de aula. \n", "\n", "Para usuarios linux o site oficial https://orangedatamining.com/ recomenda o uso de virutal env, eu uso direto sem virtual env:\n", "\n", " Instalação:\n", "\n", " sudo apt install python3-pyqt5.*\n", " pip install --upgrade --user pyqtwebengine==5.12\n", " pip install --upgrade --user pyqt5==5.12\n", " pip3 install orange3 --user\n", " pip install orange3-educational\n", "\n", "\n", " Execute:\n", "\n", " python3 -m Orange.canvas\n", " ou\n", " orange-canvas\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Agrupamento por estratégia Hierarquica\n", "\n", "adiciona descrição do problema..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Importa libs" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib inline\n", "\n", "# O scipy é bastante utilizada para Data Science\n", "from scipy.cluster.hierarchy import dendrogram, linkage\n", "\n", "from sklearn.cluster import AgglomerativeClustering\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import numpy as np" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Importa dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
CustomerIDGenreAgeAnnual_Income_kSpending_Score_1_100
01Male191539
12Male211581
23Female20166
34Female231677
45Female311740
\n", "
" ], "text/plain": [ " CustomerID Genre Age Annual_Income_k Spending_Score_1_100\n", "0 1 Male 19 15 39\n", "1 2 Male 21 15 81\n", "2 3 Female 20 16 6\n", "3 4 Female 23 16 77\n", "4 5 Female 31 17 40" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "url_db= 'https://stackabuse.s3.amazonaws.com/files/hierarchical-clustering-with-python-and-scikit-learn-shopping-data.csv'\n", "df = pd.read_csv(url_db)\n", "\n", "#renomeando o nome das colunas para tirar espaço\n", "df.columns = ['CustomerID', 'Genre', 'Age', 'Annual_Income_k','Spending_Score_1_100']\n", "df.head()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Descrição das colunas do dataset:\n", "\n", " CustomerID = Identificação do usuario\n", " Genre = Genero\n", " Age = Idade\n", " Annual Income (k$) = Rendimento anual em k$\t\n", " Spending Score (1-100) = Indice de \"vontade de gastar no shooping\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando um subset" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "data = df.iloc[:,[3,4]].values\n", "data;" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualização no espaço 2D" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGbCAYAAAAGO97oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAsIUlEQVR4nO3df6xcZ53f8c/XjlluoMolxE2TGxu7JSKi3FLTEXGV1QrCqsAmIlcWSxNhNmVZRZXoLrulbB02KqqUykZUy7JqixQRlqCgBJRNnaiBZVGSardIdntNdjFLQhcR4uRuIKbE2RWxSOJ8+8fM2Nfjc+6cH88553nOeb+kKJ4zc2eec3yeuY+f7/f5PubuAgAAQH2bum4AAABAXzCwAgAACISBFQAAQCAMrAAAAAJhYAUAABDIeV03QJIuuugi37FjR9fNAAAAmOvIkSM/cfetWc9FMbDasWOHVldXu24GAADAXGb2RN5zhAIBAAACYWAFAAAQCAMrAACAQBhYAQAABMLACgAAIBAGVgAAAIEwsAIAAAiEgRUAAEAgDKwAAAACmTuwMrPPm9kzZvaddccuNLNvmNlfT/7/mslxM7M/NLPvm9m3zewtTTYeAAAgJkVmrL4g6V0zx/ZJetDdL5f04OSxJL1b0uWT/26S9NkwzQQAAIjf3IGVu/+ZpJ/OHL5O0h2TP98haWXd8S/62CFJi2Z2SaC2AgAARK1qjtXF7v705M8/knTx5M9Lkp5c97qnJsfOYWY3mdmqma0eP368YjMAAADicV7dN3B3NzOv8HO3SbpNkkajUemfb9PBR9b0qa9/T39z4qQuXVzQx975Bq3syhwvAgCAAas6sPqxmV3i7k9PQn3PTI6vSdq27nWXTY4l6+Aja7r53qM6+eIpSdLaiZO6+d6jksTgCgAAnKVqKPB+STdO/nyjpPvWHf+1yerA3ZKeWxcyTNKnvv6904OqqZMvntKnvv69jloEAABiNXfGyszukvQ2SReZ2VOSPiHpgKSvmNmHJD0h6X2Tl39V0q9I+r6k5yV9sIE2t+pvTpwsdTwP4UQAAPpv7sDK3W/IeeodGa91SR+u26iYXLq4oLWMQdSliwuF34NwIgAAw0Dl9Tk+9s43aGHL5rOOLWzZrI+98w2F34NwIgAAw1B7VWDfTWeU6oTxQoUTAQBA3BhYFbCya6lWyC5EOBFAdeQ4tovrjSEjFNiCEOFEANVMcxzXTpyU60yO48FHkq4EEy2uN4aOgVULVnYtaf+eZS0tLsgkLS0uaP+eZf4FB7SAHMd2cb0xdIQCW1I3nAigGnIc28X1xtAxYwWg1/JyGclxbAbXG0PHwApAr5Hj2C6uN4aOUCCAXgtRMgXFcb0xdDYult6t0Wjkq6urXTcDQAeGvDR/yOcOpMzMjrj7KOs5ZqwAdGbI2z0N+dyBPiPHCkBnhrw0f8jnDvQZM1YZmJ4H2jHkpflDPnegz5ixmkHVYKA9Q16aP+RzB/qMgdUMpueB9gx5af6Qzx3oM0KBM5ieB9oz5KX5Qz53oM8YWM24dHFBaxmDKKbngWaE2O6pjbzIJj6Dra6A/iEUOIPpeSAtbeRFknsJoCgGVjNWdi1p/55lLS0uyCQtLS5o/55l/lUJRKqNvEhyLwEURSgww1Cn55sIdVC6Ak1rIy+yrdxL+guQPgZWkNRMFWgqS6MNbeRFtvEZ9BegHwgFQlIzoQ7CJ2hDG3mRbXwG/QXoB2asIKmZUAelK9CGNsoWtPEZ9BegHxhYQVIzoQ5KV0BqJ2+ojbzIpj+D/pIecuKQhVAgJDUT6qB0BShTUBz9JS3c28jDwAqSmikzQekKkDdUHP0lLdzbyEMoEKc1EeoYaukKjMWaNxRrCKeN/hLruacm1nsb3WPGCkBj8vKDuswbGnIIZ8jnHlqM9zbiwMAKQGNizBsacghnyOceWoz3NuJAKBBAY9ooU1DWkEM4Qz730GK8txEHBlYAGhVbnt2QyxoM+dybENu9jTgQCgQwKG+/Ymup431C+ApoHjNWAAbl4ceOlzreJ4SvgOYxsAIQvZAlAoaeZ9RE+IoSDsAZDKwARG1aImC6mm1aIkBSpV/ei+dv0bPPv5h5HOWF/vsBUkeOFYCohS4R4F7uODZGCQfgbAysAEQtdOjuuZPnzlZtdBwbG3poFZhFKLBHyHNAH1UpEbBRX6DkQFhcT+BszFj1BFtVoK/KlgiY1xcoORAW1xM4GwOrniDPAX21smtJ+/csa2lxQSZpaXFB+/cs587GzusLZd8PG+N6AmcjFNgT5Dmgz8qUCCjSF1KpmB1jeD+vTV23C4gFM1Y9wU7rwFhf+kKM4f0Y2wTEhoFVT5DnAIz1pS/EGN6PsU1AbAgF9gRbVQBjfekLMYb3Y2wTEBsGVj1CngMw1oe+EGMZg7baFGNuGVAUoUAAiFCMIc022kQeF1LHwAoAIhRjGYM22kQeF1JHKBAAIhVjSLPpNpHHhdQxYwUAiEZfymVguBhYAQCiEWNuGVAGoUAAQDT6Ui4Dw8XACgDEEv+YxJhbhvjF0ocZWAEYvOkS/+lqtOkSf0n8ggcSEFMfJscKwOCxxB9IW0x9mIEVgMFjiT+Qtpj6MKHARMUSSwb6IMbtYwAUF1MfZsYqQWz5AITFEn8gbTH1YQZWCYoplgz0QYzbxwAoLqY+3PtQYB9DZk3Fkvt4rYCiWOIPpC2WPtzrgVVMyy9DaiKW3NdrBQBAm3odCuxryKyJWHJfrxUAAG3q9YxVTMsvQ2piy4e+XisAANpUa2BlZr8j6TckuaSjkj4o6RJJd0t6raQjkj7g7i/UbGclMS2/DC10LLnP1woAgLZUDgWa2ZKk35I0cvc3Sdos6XpJn5T0aXd/vaRnJX0oREOriGn5Zey4VgAA1Fc3x+o8SQtmdp6k8yU9LelqSfdMnr9D0krNz6gspuWXseNaAQBQn7l79R82+4ik/yTppKQ/lfQRSYcms1Uys22SvjaZ0Zr92Zsk3SRJ27dv/2dPPPFE5Xa0jbIEAIAu8PsnDmZ2xN1HWc/VCQW+RtJ1knZKulTSqyS9q+jPu/tt7j5y99HWrVurNqN1VD0HAHSB3z9pqBMK/GVJj7v7cXd/UdK9kq6StDgJDUrSZZJ69TdOWQIAQBf4/ZOGOgOrY5J2m9n5ZmaS3iHpu5IelvTeyWtulHRfvSbGhbIEAIAu8PsnDZXLLbj7YTO7R9K3JL0k6RFJt0l6QNLdZnbr5NjtIRoaC8oSAOkjTwUp4vdPGmqtCnT3T7j7Fe7+Jnf/gLv/3N1/4O5vdffXu/uvuvvPQzU2BpQlANJGngpSxe+fNPR6S5smUJYASBt5KkgVv3/S0OstbfIQBgC603X/I08FKQu96wbCG9zAahoGmP6LdRoGkFToZq3788CQxdB/yFMB0KTBhQLrhgEIIwDVxdB/yFMB0KTBzVjVDQMQRgCqi6H/TGfGSAcA0ITBzVjlTfdvMtPOfQ/oqgMPbbg6KO/nCSMA89F/APTd4AZWWWEASTrlXmjpNWEEoLoY+g/lFgA0aXADq9nlqpvNznnNRjkfLHcFqouh/8SQ5wWgv8zdu26DRqORr66udvLZO/c9oKwrYJIeP3BN281JXtdL6ZGeWw4e1V2Hn9Qpd2020w1XbtOtK8uNfV5Xfb5I36D/AGkwsyPuPsp6bnDJ67NYeh1ODEvpkZZbDh7VnYeOnX58yv3046YGV130+SJ9g/4D9MPgQoGzYsj56AtCLCjrrsNPljoeQhd9vkjfoP8A/TD4GSuWXocTw1J6pOVUTipC3vEQuujzRfoG/Qfoh8EPrCS2CAiFsCrK2myWOYjKWlRSR1bu0jf3XR30MzZSpG/QfxALcv3qGXwoEOEQVkVZN1y5rdTxKmIor1Ckb9B/EIMY+kvqGFghmBiW0iMtt64sa+/u7adnqDabae/u7UET12PIXSrSN+g/iEEM/SV1gy+30JXZqda3X7FVDz92POjUa93pXKaDEYs692JeeQVpXGKBexs4gxJExVBuITJZy6rXLzkPscy67tJtln4jFnXvxbzcJUlnhTqKvh/QZ+T61UcosANZU62z6k691p3OZToYsah7L+ZtY1X1/YA+I9evPmasOlB0+XSdZdZ1l26z9BuxqHsvzpZXyAsLcm8DlCAKgYFVAaFzjTYKTcy+LvRnFH1PpoMRi7x7cZOZdu57oFCfXF9S5aoDD3FvAxugBFE9hALnaGLpaZHQRN2p17rTuUwHIxZ5/eWUe6U+yb0NoEkMrOZoItcoa1n13t3bgy6zrrt0m6XfiMXsvZhVPLRMn+TeBtAkyi3MwdJToF3zQu/0SQBd26jcAjNWc+TlXZCPAYRXJPROnwQQMwZWc5CPAbSnSOidPgkgZqwKnIOlp0B7ipRWoE8CiBkDqwJYegq0o2iZD/okgFgRCgQQDcJ8AFLHjBWAaBDmA5A6BlYAokKY74zQuz6kYqjnjX5gYAUAEZqWnpiukpyWnpDU60HGUM8b/UGOFQBEqIldH1Iw1PNGfzCwAoAIFSk90UdDPW/0B6FAAIhQ0dITKdooh6rP541hYMYKACLU19IT87Yt6ut5YzgYWAFAhFZ2LWn/nmUtLS7IJC0tLmj/nuXkE7jn5VD19bwxHIQCASBSfSw9UXTbor6dN4aDGSsAQGvycqXIoUJfMLACALSGHCr0HaFAAEBr2LYIfcfAKgC2XwCA4sihQp8xsKqJ7RcAAMAUOVY1sf0CAACYYmBVE9svAACAKUKBNbH9QjnkowEA+owZq5pYOlzcvK0sAABIHQOrmth+oTjy0QAAfUcoMACWDhdDPhoAoO+YsUJr2MoCANB3DKzQGvLRAAB9RygQrWErCwBA3zGwQqvIRwPyUY4ESB8DKwCIANtjAf1AjhUARIByJEA/MLACgAhQjgToBwZWABABypEA/cDACgAiQDkSoB9IXgeACFCOBOgHBlaJSnVZdqrtBtpAORIgfQysEpTqsuxU2w0AQFHkWCUo1WXZqbYbAICias1YmdmipM9JepMkl/Trkr4n6cuSdkj6oaT3ufuzdT4HZ0t1WXbVds+GD99+xVY9/NjxwYUTCaMCQPzqzlh9RtKfuPsVkt4s6VFJ+yQ96O6XS3pw8hgBpbosu0q7p+HDtRMn5RqHD+88dOysxzffe1QHH1lrptGRyLoOQzhvAEhN5YGVmV0g6Zck3S5J7v6Cu5+QdJ2kOyYvu0PSSr0mYlaqy7KrtDsrfDhrCOFEwqgAkIY6ocCdko5L+iMze7OkI5I+Iulid3968pofSbo464fN7CZJN0nS9u3bazRjeFJdll2l3UXDm7GHQetKNfwLAENTZ2B1nqS3SPpNdz9sZp/RTNjP3d3MPOuH3f02SbdJ0mg0ynwN8qW6LLtsuy9dXNBagcFDmTBoVq7S6hM/1V2Hn9Qpd2020w1XbtOtK8uF37NpedehbPi3bJ4WeV0AUE6dHKunJD3l7ocnj+/ReKD1YzO7RJIm/3+mXhMxZFnhw1llwqBZuUr/9st/oTsPHdMpH4/vT7nrzkPHdMvBo3WbH0yI8G/ZPC3yugCgvMoDK3f/kaQnzWz6zf4OSd+VdL+kGyfHbpR0X60WYtBWdi1p/55lLS0uyCQtLS5o7+7tZz3ev2e58CxKVq7Syzmvvevwk7XaHlLWdShz3lL5PC3yugCgvLoFQn9T0pfM7BWSfiDpgxoP1r5iZh+S9ISk99X8DAxcyLBnmZyk6QxWV7LCcN/cd3Xl9yubpxUqr4twIoAhqTWwcve/kDTKeOoddd4XaErRnC1J2mzWcGvyNVGlvmyeVoi8LqrtAxgaKq9jULJylfI6wQ1Xbmu+QTmaCMOVzdMKkddFOBHA0LBXIAYlr+RDbKsCmyivULbcRYiyHpSJADA05h3nkUjjcgurq6tdNwNoVJlco6sOPJQZhltaXKiVZ9WEjc4rpfMAgKLM7Ii7Z6VCEQoE2lC2dEEq1fXnnVcq5wEAoTCwAlpQNtcoRHmFNsw7r1TOAwBCIccKvRdiuX/d96iSa9REdf3QpQ+KnFequwQAQBUMrNBrIZb7h3iPUFvS1NFE6YMLFrboxMkXM48DwBARCkSvhVjuH+I9Ysg1aqL0QV6prw5LgAFAp5ixQq+FWO4f4j1ClC6oq4nSByeeP3e2aqPjANB3DKzQqaa3O6kaglvfrk1mmdvbNB3Gm3dtyl67JsKRMYQ4ASAmhALRmbIlCKp4+xVbSx3PalfWoKpsGK/suc57fZVrV+VazBNDiBMAYsLACp1pY7uThx87Xup4Xruk8d6BVUsGlD3Xea+vcu2qXIt5KKcAAGcjFIjOVM35KRMCq/IZec+97K7HD1yzYdvKvmfV4yHPa+3ESe3c90DlUCzlFADgDGas0Jm8PJyN8nPKhsCqfEaVn5ln8fzs8gN5x+e1IeR5SWosFAsAQ8PACp2pkp9TNgRW5TOayBvK25Iz7/i8NoQ6r1mhQ7EAMDSEAtGZKiUIyobAqnxGE6URnssoornR8XltCHFeeduv1ym/AABDZ573T+YWjUYjX11d7boZSMBVBx7KXN6/tLigb+67uoMWFRNju2NsEwCkwMyOuPso6zlCgUhKqsv7myh1UFeq1xIAYkYoEEmJoYJ5FU2UOqgr1WsJADFjYIXoZZVXqBOqarrae5YmtpPJ0sW5AQDOYGCFqE3LK0xXAk5LAkiqNGAI/X5FXbCwRScyEtUvWMgut1BF2XPr6loAQJ+RY4Woha7O3ka19yxm5Y5XEbq6OwCgPAZWiFroEFpbIblZJ57PLquQd7yK0NXdAQDlEQpE1C5dXMgsCVCmCvr6vKNNZpmbKl+wsEVXHXiosdykEOcR+jPaaBMADA0zVoha3ZIAs1vgZA2qtmwy/eyFlwpvk1NFG+UWyl4ryi0AQHgMrBC1lV1L2r9nWUuLCzKNi1fu37NceDYpK49IkjabnX6/V7/yPL146uwBV+hcozbKLZS9VnWvLQDgXIQCEb2VXUuVf9nn5Qu97K7HD1wjSdq574FSPxuyHaHzmcpeqzrXFgBwLgZWSN5GtZuK5BHFmP9UVdk6VvNeT10sACiHUCCSNptDNZsfVSSPKMb8pyrmXYuyry/7fgAABlZI3LxaTEXyiGLMf6oidB0r6lwBQHmEApG0IrlL8/KIirxHiJBY0/lMeeexduKkdu574Jx2zztv6lwBQHnMWCFpG9VoCvUeqYTEFs/P3x4nq93zzjvEtQWAoWFghaSFyF2a9x6phMQySnSdY3275503da4AoDxCgUjaNKxVJ0w37z1SCYk9l7HJc5Zpu+edd4hrCwBDw8AKyWs6dylUqYSmSxfktXPWJrPTOVchVz4CAAgFAkFKNtT9jBCy2pnllPvpNtx56BjlFgAgIAZWGLwQJRvqfkYIWe3cu3v76cebzea+B+UWAKAeQoHoVAyVvUOUbAjxGU0Yve5C3bqyLCl/655ZlFsAgOqYsUJnYgk1XbCQXaYg73gVeaUQNiqRUNa861k0J4xyCwBQHQMrdCaWUFNehKxA5KywvFIIRUokFDXvehbJwaLcAgDUQygQnYkl1HTi+ewyBXnHq8grhVC0REIR865nVvmEt1+xVQ8/dpxyCwAQCAMrdKatMgbzng/Vjo2E+IwQ5zGbK3bwkbWz9kRcfeKn53zGN/ddXbiNADB0hALRmTbKGBTJ42oj5JVXL6poHakmziPrPTcqvwAAmI+BFTrTRhmDInlcIdoxz/pZoSLHZzVxHlnvOYvyCgBQDqFAdKpKGYP1IbG83O+yJQOart5eN5+sifOo+9kAgHMxY4WkzIav8sRWMqBuO5o4j7qfDQA4FwMrJKVI+CrGkgF129HEeZQtvwAAmI9QIJKyUVjKpGhLBtRtRxPnUbb8AgBgPgZWSEpeSYGlxYXcsgBN50+1pYnz6Mu1AYBYEApEUmIJ7ZUVy/Y9AIBmMbBCUtoojdCEWLbvAQA0i1AgkpNi+CqW7Xtm1a1aX/Q1ADAUDKyAFrSxbU5Z0/DkdCZtGp6UxoPXec8XeQ8AGBpCgUALYswNC1G1nhAnAJyNGSugBbGUfVhvXniySPgy1hAnAHSFgRU6dcvBo7rr8JM65a7NZrrhym26dWW562Ylmzc02+7ZulTrH28y0yk/t379JjPt3PdA7vPrw5cxhjgBoEuEAtGZWw4e1Z2Hjp3+5X3KXXceOqZbDh7ttF1NlEZoo9xC1mfceehY7uOsQZMmx/Oenw1fxhjiBIAuMbBCZ+46/GSp421pIm+ojVykItv9ZNlsJpv8f6Pns0pbpFr+AgCaQigQndloxmQjTYfpmsgbauI9Z69DVkiuiJfd9fiBa7Rz3wMbPp8nxfIXANAUZqzQmY1mSPK0EVLLyw+qkzd0wcKWUsfnyboO+VdtY4vnj9vQxHkDwNAwsEJnbrhyW6njUjshtSbyhvLGihuMITeUdR1cqjS4mk4Qki8FAPUxsEJnbl1Z1t7d20/PUG02097d2zdcFdjG8v4m8oZOPP9iqePz5J2vS2e1e+/u7acf53nu5LgN5EsBQH21c6zMbLOkVUlr7n6tme2UdLek10o6IukD7v5C3c9pUqpL6/vg1pXlUuUV2lreHzpvKHS7895vcSa0OHrdhaev71UHHprbhirnHWP/ibFNAIYhxIzVRyQ9uu7xJyV92t1fL+lZSR8K8BmNaSNnB+GkGq4K3e6s99uyyfSzF17KvZebuHYx9p8Y2wRgOGoNrMzsMknXSPrc5LFJulrSPZOX3CFppc5nNI0tOdKSargqdLuz3u/VrzxPL546e0Xl+nu5iWsXY/+JsU0AhqNuKPAPJP2upL83efxaSSfc/aXJ46ckZX5rm9lNkm6SpO3bt9dsRr55IQG25EhPqsv7Q7d79v3yyiWsv5dDtyHG/hNjm4aGUCyGrPKMlZldK+kZdz9S5efd/TZ3H7n7aOvWrVWbsaEiIQGWmKMvuriXY+w/MbZpSAjFYujqhAKvkvQeM/uhxsnqV0v6jKRFM5vOhF0mqbPeVCQkkGrODjCri3s5xv4TY5uGhFAshq7ywMrdb3b3y9x9h6TrJT3k7u+X9LCk905edqOk+2q3sqIiIYFUc3aAWV3cyzH2nxjbNCSEYjF0TWxp8+8l3W1mt0p6RNLtDXxGIUWXuKeaswPM6uJejrH/xNimoWirJAoQqyAFQt39f7r7tZM//8Dd3+rur3f3X3X3n4f4jCoICQBAu/jexdD1ehPm6b9YWZ0CAO3gexdDZ+4+/1UNG41Gvrq62nUzAAAA5jKzI+4+ynqOvQIBAAACYWAFAAAQCAMrAACAQHqdvI74sNUFusB9B6AtDKzQmulWF9OqzNOtLiTxSw6N4b4D0CZCgWgNW12gC9x3ANrEjFUAVcIMQwlNrD/PvMIebHUxbE33haJbrAylTwJoFgOrmqqEGYYSmpg9zzxsdTFcbfSFIlusDKVPAmgeocCaqoQZhhKayDrPWWx1MWxt9IUiW6wMpU8CaB4zVjVV2cl9KLu/b3Q+JhFuQSt9ocgWK0PpkwCax8Cqpio7uQ9l9/e881xaXNA3913dQYsQm7x7ZJOZdu57INjge2XX0obvMZQ+CaB5hAJrqrKT+1B2fx/KeaK6rHtEkk65y3Um1+ngI2utt4N7FUAVzFjVVGUn96Hs/j6U80R1s/fIJjOdmtkYfprr1OR9w70KIBRzz1sE357RaOSrq6tdNwNAx3bueyCzLIdJevzANW03BwAymdkRdx9lPUcoEEA08nKayHUCkAoGVgCiQa4TgNSRYwUgGuQ6AUgdA6tEsf0G+mpeaQR0i+8eYGMMrBLE9hsAusB3DzAfOVYJYvsNAF3guweYj4FVgth+A0AX+O4B5iMUmKC87TcuWNiiqw48RO4DgEaw9Q8wHzNWCcpakr5lk+lnL7yktRMnW90KBMBwUA4DmI+BVYJWdi1p/55lLS0uyDTe1PjVrzxPL57K3goEAELI+u7Zv2eZmXFgHba06Qm2AgEAoB1saTMAbAUCAED3GFj1BLkPAAB0j1WBPcFWIAAAdI+BVUva2AaCrUCQArZEAdBnDKxawDYQwBh9AUDfkWPVAraBAMboCwD6jhmrFrANxBmEgYaNvgDEj+/pepixagGlEMamYSCqww8XfQGIG9/T9TGwagGlEMYIA4G+AMSN7+n6CAW2gFIIY4SBQF8A4sb3dH0MrFpCKYRxuGcto3MSBhoW+kI+clvQNb6n6yMUiNYQBgLykduCGPA9XR8DK7RmZdeS9u9Z1tLigkzS0uKC9u9Z5l/kgMhtQRz4nq6PUCCCmhfKIAyEoZrXN8htQSz4nq6HgRWCoao2kK1I3yC3BegHQoEIhlAGkK1I3yC3BegHZqwQDKEMIFuRvkEpCqAfGFghGEIZQLaifYPcFiB9hAIRDKEMIBt9AxgOZqwQDKEMIBt9AxgOc/eu26DRaOSrq6tdNwMA0AIqzCN1ZnbE3UdZzzFjBQBoDWVZ0HfkWAEAWkNZFvQdAysAQGsoy4K+IxQIAGhNkdIT5GAhZcxYAQBaM6/0xDQHa+3ESbnO5GAdfGStg9YC5TGwAgC0ZmXXkvbvWdbS4oJM0tLigvbvWT6rJAU5WEgZoUAAg0OoqVsbVZgnBwupY8YKwKAQaopb3hZYbI2FVDCwAjAohJrixvY/SB2hQACDQqgpbmz/g9QxsAIwKEWW+6NbG+VgAbEjFAhgUAg1AWgSM1YABoVQE4AmVR5Ymdk2SV+UdLEkl3Sbu3/GzC6U9GVJOyT9UNL73P3Z+k0FgH6h7APQP3VCgS9J+qi7v1HSbkkfNrM3Ston6UF3v1zSg5PHABCFWMotxNIOAGFVHli5+9Pu/q3Jn/9O0qOSliRdJ+mOycvukLRSs40AEEws5RZiaQeAsIIkr5vZDkm7JB2WdLG7Pz156kcahwqzfuYmM1s1s9Xjx4+HaAYAzBVLuYVY2gEgrNoDKzN7taQ/lvTb7v63659zd9c4/+oc7n6bu4/cfbR169a6zQCAQmKp7B1LOwCEVWtgZWZbNB5Ufcnd750c/rGZXTJ5/hJJz9RrIgCEE0u5hVjaASCsygMrMzNJt0t61N1/f91T90u6cfLnGyXdV715ABDWyq4l7d+zrKXFBZmkpcUF7d+z3PpqvFjaASAsG0frKvyg2S9K+nNJRyW9PDn8cY3zrL4iabukJzQut/DTjd5rNBr56upqpXYAAAC0Wb7EzI64+yjrucp1rNz9f0mynKffUfV9AQAAypiWL5mutJ2WL5HU+iwwW9oAAICkxVS+hIEVAABIWkzlS9grELnYbgN9xb0dN/5+UNaliwtayxhEdVG+hBkrZGK7DfQV93bc+PtBFTGVL2FghUwxxauBkLi348bfD6qIqXwJoUBkiileDYTEvR03/n5Q1cqupShCxgyskCmmeDUQEvd23Pj72Rj5Z/EjFIhMMcWrgZDefkX23qR5x9EuvnvykX+WBgZWyBRTvBoI6eHHjpc6jnbx3ZOP/LM0EAqsYChTsbHEq4GQUsrhSeW7JnQ7+e7JltK9O2QMrEqKqWw+gPJSyeFJ5bsmlXb2QSr37tARCiyJqVggbank8KTyXZNKO/sglXt36JixKompWCBt01mU2ENsqXzXpNLOPkjl3h06BlYFrM8f2GSmU+7nvKbtqdgmci9SyecA6kohh6epsE/ofk54ql0p3LtDRyhwjtnlrVmDqranYptYcssyXiAuTYR9mujnhKeAszGwmiMrf0CSNpt1thS4iZwG8iSAuDRRdqCJfk55BOBshALnyMsTOOUua7ktU03kNJAnAXRvNkwXumhpU/2c8BRwBjNWc2yUJ9BVyCyvTXVyGpp4TwDFZYXp7jx0LGjYjn4ONI+B1RxZ+QOz2g6ZNZHTQJ4E0K28tIP16n7X0M+B5hEKnGN2eeu5qetjbYbMmlhyyzJeoFtFv0PqfNfQz4HmmWescmvbaDTy1dXVrptRyFUHHspcWry0uKBv7ru6gxYBmCeFUiJ53y2z+K4BumdmR9x9lPUcocCSmEoH0pJKKZEiaQd81wDxY2BVEkuLgbSkUkok67tl7+7tfNcAiSHHqgKWFgPhNB2mS6mUCN8tQPqYsQLQmTbCdJQYANAmBlYAOtNGmI68SABtIhQIoDNthOkoMQCgTQysAHTm0sWFzBID88J0ZfOyUsldSqEsBICNEQoE0JkqYbpUyieU1dfzAoaGgRWAzlQpX5JK+YSy+npewNAwsAKQlJTKJ5TR1/MChoaBFYDOVAl/9bV8Ql/PCxgaBlYAOlMl/NXX8gl9PS9gaFgVCKAzVcJffS2f0NfzAoaGgRWAzlQtt5BK+YSy+npefUV5DGQhFAigM4S/kCrKYyAPAysAnalSbgGIAeUxkIdQIIBOFQl/EXJBbCiPgTzMWAGIGiEXxIjyGMjDwApA1Ai5IEbkByIPoUAAUSPkghhRHgN5BjmwmpevQT4HEI+qJRmAplEeA1kGFwqcl69BPgcQF0IuAFIyuIHVvHwN8jmAuFCSAUBKBhcKnJev0VU+B+FHoLo2+g99FEARgxtYzcvX6CKfYxp+nM6UTcOPkvjixuDN6x9t9B/6KICiBhcKnJev0UU+B+FHIF8M4Xv6KICiBjdjNW+JbBdLaFlODuSLIXxPHwVQ1OAGVtL8JbJtL6FtKvxYNieEHBLEKIbwPSUfABQ1uFBgjJoIP5YtG0GZCcQqhvA9JR8AFMXAKgJNLCcvmxNCDgliNa9/tFGOgZIPAIoyd++6DRqNRr66utp1M3KlGCLbue8BZf3NmqTHD1xT+/UAAAyVmR1x91HWc8xYzZFqiKzszuvs1A4AQH0MrOZINURWNieEHBIAAOob5KrAMlJdZl22bAQ7tQMAUB8DqzlSXmZdtmwEO7UDAFAPocA5CJEBAICimLGagxAZAAAoioFVAYTIAABAEQysAAzOLQeP6q7DT+qUuzab6YYrt+nWleWumwWgBxhYARiUWw4e1Z2Hjp1+fMr99GMGVwDqInkdwKDcdfjJUscBoIxGBlZm9i4z+56Zfd/M9jXxGQBQxamcbbzyjgNAGcEHVma2WdJ/lfRuSW+UdIOZvTH05wBAFZvNSh0HgDKamLF6q6Tvu/sP3P0FSXdLuq6BzwGA0m64clup4wBQRhMDqyVJ65MVnpocO4uZ3WRmq2a2evz48QaaAQDnunVlWXt3bz89Q7XZTHt3bydxHUAQna0KdPfbJN0mSaPRiOQGAK25dWWZgRSARjQxY7Umaf2c+mWTYwAAAL3WxMDq/0i63Mx2mtkrJF0v6f4GPgcAACAqwUOB7v6Smf0bSV+XtFnS5939r0J/DgAAQGwaybFy969K+moT7w0AABArKq8DAAAEwsAKAAAgEAZWAAAAgTCwAgAACISBFQAAQCAMrAAAAAJhYAUAABAIAysAAIBAzL37/Y/N7LikJ7puRwUXSfpJ143oCa5lWFzPcLiW4XAtw+FahlPlWr7O3bdmPRHFwCpVZrbq7qOu29EHXMuwuJ7hcC3D4VqGw7UMJ/S1JBQIAAAQCAMrAACAQBhY1XNb1w3oEa5lWFzPcLiW4XAtw+FahhP0WpJjBQAAEAgzVgAAAIEwsAIAAAiEgVVBZrbNzB42s++a2V+Z2Ucmxy80s2+Y2V9P/v+artuaCjPbbGaPmNn/mDzeaWaHzez7ZvZlM3tF121MgZktmtk9ZvaYmT1qZv+c+7IaM/udSf/+jpndZWav5L4szsw+b2bPmNl31h3LvBdt7A8n1/XbZvaW7loen5xr+alJP/+2mf13M1tc99zNk2v5PTN7ZyeNjlTWtVz33EfNzM3sosnj2vclA6viXpL0UXd/o6Tdkj5sZm+UtE/Sg+5+uaQHJ49RzEckPbru8SclfdrdXy/pWUkf6qRV6fmMpD9x9yskvVnja8p9WZKZLUn6LUkjd3+TpM2Srhf3ZRlfkPSumWN59+K7JV0++e8mSZ9tqY2p+ILOvZbfkPQmd/8nkv6vpJslafK76HpJ/3jyM//NzDa319TofUHnXkuZ2TZJ/0LSsXWHa9+XDKwKcven3f1bkz//nca/vJYkXSfpjsnL7pC00kkDE2Nml0m6RtLnJo9N0tWS7pm8hGtZgJldIOmXJN0uSe7+grufEPdlVedJWjCz8ySdL+lpcV8W5u5/JumnM4fz7sXrJH3Rxw5JWjSzS1ppaAKyrqW7/6m7vzR5eEjSZZM/Xyfpbnf/ubs/Lun7kt7aWmMjl3NfStKnJf2upPWr+GrflwysKjCzHZJ2STos6WJ3f3ry1I8kXdxVuxLzBxrf0C9PHr9W0ol1XxpPaTxwxcZ2Sjou6Y8mYdXPmdmrxH1ZmruvSfrPGv/r9WlJz0k6Iu7LuvLuxSVJT657Hde2nF+X9LXJn7mWJZnZdZLW3P0vZ56qfS0ZWJVkZq+W9MeSftvd/3b9cz6uXUH9ijnM7FpJz7j7ka7b0gPnSXqLpM+6+y5JP9NM2I/7sphJ7s91Gg9WL5X0KmWED1Ad92IYZvZ7GqenfKnrtqTIzM6X9HFJ/6GJ92dgVYKZbdF4UPUld793cvjH02nCyf+f6ap9CblK0nvM7IeS7tY41PIZjadcz5u85jJJa900LylPSXrK3Q9PHt+j8UCL+7K8X5b0uLsfd/cXJd2r8b3KfVlP3r24JmnbutdxbQsws38l6VpJ7/czhSi5luX8I43/AfWXk99Dl0n6lpn9AwW4lgysCprkAN0u6VF3//11T90v6cbJn2+UdF/bbUuNu9/s7pe5+w6NEy4fcvf3S3pY0nsnL+NaFuDuP5L0pJm9YXLoHZK+K+7LKo5J2m1m50/6+/Racl/Wk3cv3i/p1yarsHZLem5dyBAZzOxdGqdQvMfdn1/31P2SrjezXzCznRonXv/vLtqYAnc/6u5/3913TH4PPSXpLZPv09r3JZXXCzKzX5T055KO6kxe0Mc1zrP6iqTtkp6Q9D53z0qSQwYze5ukf+fu15rZP9R4ButCSY9I2uvuP++weUkws3+q8SKAV0j6gaQPavyPJu7LkszsP0r6lxqHWR6R9Bsa51dwXxZgZndJepukiyT9WNInJB1Uxr04Gbz+F43Drc9L+qC7r3bQ7CjlXMubJf2CpP83edkhd//Xk9f/nsZ5Vy9pnKrytdn3HKqsa+nut697/ocarwb+SYj7koEVAABAIIQCAQAAAmFgBQAAEAgDKwAAgEAYWAEAAATCwAoAACAQBlYAAACBMLACAAAI5P8DzgYR0BIfIsIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,7))\n", "plt.scatter(data[:, 0], data[:, 1])\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Desafio 2\n", "\n", "Realize uma análise visual e determine uma quantidade de cluster. \n", "\n", " [ ] - 2 clusters\n", " [ ] - 3 clusters\n", " [ ] - 4 clusters\n", " [ ] - 5 clusters\n", " [ ] - 6 clusters\n", " [ ] - 7 clusters\n", " [ ] - 8 clusters \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Dendrograma\n", "\n", "O dendrograma é uma forma grafica de visualizar o agrupamentos de objetos. \n", "\n", "O agrupamento (`linkage`) é feito de forma iterativa: No inicio, cada objeto é um cluster e no fim, todos os objetos fazem parte do mesmo cluster. " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAI+CAYAAACc3l9RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABB0UlEQVR4nO3df5zVZZ3//+crwSwBlWZwyEkHSkEMNBs1Yy3yR5G1mZXSj1WbLG13s9rcLdt+uFq72X7TaqstbXNWc9sQy2iNpUSliFxoMmTCGcgvYEIzMAQGI2mg1+eP63rPvDmcM3PmOr/PedxvN26855z3j+u8fz7P9b7O9TbnnAAAADA2z6l0AQAAAGoRIQoAACACIQoAACACIQoAACACIQoAACACIQoAACDCuHIurKmpybW1tZVzkQAAAFF+9atf7XDONed6v6whqq2tTV1dXeVcJAAAQBQze2yk97mdBwAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIEQBQAAECGvEGVmR5rZXWbWa2Y9ZnammU02s3vN7Lfh/6NKXVgAAIBqkW9N1JclLXXOzZR0sqQeSddIus85d7yk+8LfAAAADWHcaCOY2RGSXiXp3ZLknPuzpD+b2QWS5oXRbpO0XNLHSlHIUvjOqt9p8ZqtlS4GUBUuOOUYvfOMYytdDACoKfnURE2TNCCp08x+bWb/YWaHSzraOdcXxumXdHS2ic3sCjPrMrOugYGB4pS6CBav2apH+nZXuhhAxT3St5svFAAQYdSaqDDOqZKucs6tMrMvK+PWnXPOmZnLNrFz7hZJt0hSe3t71nEqZdbUSVp45ZmVLgZQUQtufrDSRQCAmpRPTdQWSVucc6vC33fJh6ptZjZVksL/20tTRAAAgOozaohyzvVLetzMZoSXzpH0iKQfSrosvHaZpMUlKSEAAEAVyud2niRdJem/zOxQSRsldcgHsDvN7HJJj0m6uDRFBAAAqD55hSjn3BpJ7VneOqeopQEAAKgR9FgOAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQYVylC4DG8Z1Vv9PiNVsrXQxkeKRvtyRpwc0PVrgkyOaCU47RO884ttLFAJAFNVEom8Vrtg5dsFE9Zk2dpFlTJ1W6GMjikb7dfPEAqhg1USirWVMnaeGVZ1a6GEBNoHYQqG7URAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQgRAEAAEQYl89IZrZZ0h5Jz0ja75xrN7PJkhZKapO0WdLFzrldpSkmAABAdRlLTdRrnHOnOOfaw9/XSLrPOXe8pPvC3wAAAA2hkNt5F0i6LQzfJunNBZcGAACgRuQbopykn5jZr8zsivDa0c65vjDcL+noopcOAACgSuXVJkrSXzjntprZFEn3mllv+k3nnDMzl23CELqukKRjjz22oMICAABUi7xqopxzW8P/2yXdLel0SdvMbKokhf+355j2Fudcu3Ouvbm5uTilBgAAqLBRQ5SZHW5mE5NhSa+V9BtJP5R0WRjtMkmLS1VIAACAapPP7byjJd1tZsn433HOLTWzX0q608wul/SYpItLV0wAAIDqMmqIcs5tlHRyltf/IOmcUhQKAACg2tFjOQAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQARCFAAAQIRxlS4AgMr4zqrfafGarZUuBkbwSN9uSdKCmx+scEmQywWnHKN3nnFspYuBCqEmCmhQi9dsHbpIozrNmjpJs6ZOqnQxkMMjfbv5ItLgqIkCGtisqZO08MozK10MoCZRQwhqogAAACIQogAAACIQogAAACIQogAAACIQogAAACIQogAAACJUpIuDaujkr1o6saOjNgAAalNFaqKqoZO/aujEjo7aAACoXRXrbJNO/ipfCwYAAOLRJgoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACDCuEoXALXlO6t+p8VrtkZN+0jfbknSgpsfHPO0F5xyjN55xrFRywUAoBSoicKYLF6zdSgMjdWsqZM0a+qkMU/3SN/u6OAGAECpUBOFMZs1dZIWXnlm2ZYXU3MFAECpURMFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgRAFAAAQgV/nAUAdK6RvN4yskL7vMLJa6RuQmigAqGOF9O2GkcX2fYeR1VLfgNREAUCdK3ffbkAhaqlmj5ooAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACIQoAACACHmHKDM7xMx+bWb3hL+nmdkqM3vUzBaa2aGlKyYAAEB1GUtN1Ick9aT+/rykLzrnXiJpl6TLi1kwAACAapZXiDKzVklvkPQf4W+TdLaku8Iot0l6cwnKBwAAUJXyrYn6kqSPSno2/P0CSU845/aHv7dIOibbhGZ2hZl1mVnXwMBAIWUFAACoGqOGKDN7o6TtzrlfxSzAOXeLc67dOdfe3NwcMwsAAICqMy6PceZKepOZnS/pMEmTJH1Z0pFmNi7URrVK2lq6YgIAAFSXUWuinHMfd861OufaJL1d0v3OuXdJekDS28Jol0laXLJSAgAAVJlC+on6mKSPmNmj8m2kvlWcIgEAAFS/fG7nDXHOLZe0PAxvlHR68YsEAABQ/eixHAAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIMKoIcrMDjOz1Wb2sJmtM7PrwuvTzGyVmT1qZgvN7NDSFxcAAKA65FMT9bSks51zJ0s6RdJ8M3uFpM9L+qJz7iWSdkm6vGSlBAAAqDKjhijnDYY/x4d/TtLZku4Kr98m6c2lKCAAAEA1yqtNlJkdYmZrJG2XdK+k/1/SE865/WGULZKOyTHtFWbWZWZdAwMDRSgyAABA5eUVopxzzzjnTpHUKul0STPzXYBz7hbnXLtzrr25uTmulAAAAFVmTL/Oc849IekBSWdKOtLMxoW3WiVtLW7RAAAAqlc+v85rNrMjw/DzJJ0nqUc+TL0tjHaZpMUlKiMAAEDVGTf6KJoq6TYzO0Q+dN3pnLvHzB6R9F0z+6ykX0v6VgnLCQAAUFVGDVHOubWSXpbl9Y3y7aMAAAAaDj2WAwAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARCBEAQAARBhX6QJUu0UbFmnJxiUlmff6na+WJHUsvaUk85ek86efr4tOuKhk88/HuhVbtWH1tujpdzwxKEm6+8aHCirHCacfrZPOOqageQAAkCBEjWLJxiVav3O9ZkyeUfR5v+xlPy36PNPW71wvSRUPURtWb9OOLYNqap0QNf0HjnxBwWXYscUHMUIUAKBYCFF5mDF5hjrnd1a6GGPWsbSj0kUY0tQ6QRdefWrFll9oLRYAAJloEwUAABCBmigAAFB0XV1d6u7uHvN0/f1HSpI6O+PuAM2ePVvt7e1R044VIQoAABRdd3e3+vv71dLSMqbp3n3sE9HL7O/vlyRCFAAAqG0tLS3q6Chf+9zY2qtYtIkCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIQIgCAACIwGNfULXWrdiqDau3FWVeO7bskSTdfeNDBc/rhNOP1klnHVPwfAAAtY2aKFStDau3aceWwaLMq6l1oppaJxY8nx1bBosW7AAAtY2aKFS1ptYJuvDqUytdjCHFqMkCANQHaqIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAiEKIAAAAijKt0AQAUz9plS9Wzcnle4w48PVuStPC6xXnP/8S58zTn3PkxRQOAukOIAupIz8rlGti8Sc1t00Yd98rndo9p3gObN0kSIQoAAkIUUGea26ZpwbU3FH2+C6+7pujzBIBaRpsoAACACIQoAACACNzOqyOLNizSko1Lhv7u3dkrSepY2iFJOn/6+brohIsqUjYAAOoNNVF1ZMnGJVq/c/3Q3zMnz9TMyTMlSet3rj8gYAEAgMJQE1VnZkyeoc75nQe9ntRGAQCA4qAmCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIAIhCgAAIMKoIcrMXmRmD5jZI2a2zsw+FF6fbGb3mtlvw/9Hlb64AAAA1SGfmqj9kq52zs2S9ApJf2tmsyRdI+k+59zxku4LfwMAADSEcaON4Jzrk9QXhveYWY+kYyRdIGleGO02ScslfawkpURF7Vp4p3bfc48k6emm10iSHrvk65KkSW98o45acHHFygYAQKWMGqLSzKxN0sskrZJ0dAhYktQv6ejiFg3VYvc99+ip3l4dNnOmvrzjgaHXn+rtlSRCFACgIeUdosxsgqTvSfqwc263mQ2955xzZuZyTHeFpCsk6dhjjy2stKiYw2bO1HHfvv2A1x675NIKlQYAgMrL69d5ZjZePkD9l3Pu++HlbWY2Nbw/VdL2bNM6525xzrU759qbm5uLUWYAAICKy+fXeSbpW5J6nHM3pd76oaTLwvBlkhYXv3gAAADVKZ/beXMlXSKp28zWhNf+UdINku40s8slPSaJhjEAAKBh5PPrvJ9Lshxvn1Pc4gAAANQGeiwHAACIQIgCAACIMKZ+oqrRog2LtGTjkpLNv3en7wupY2lHyZZx/vTzddEJF5Vs/gAAoPhqviZqycYlWr9zfcnmP3PyTM2cPLNk81+/c31JQyAAACiNmq+JkqQZk2eoc35npYsRpZQ1XAAAoHRqviYKAACgEghRAAAAEQhRAAAAEQhRAAAAEQhRAAAAEQhRAAAAEQhRAAAAEQhRAAAAEeqis00AiDW4qk971wxUuhgls6/vSUnS9pvXVrgkpfH8U5o14YyplS4GGhQhCmhga5ctVc/K5XmNu33zRknSwuuuGXXcE+fO05xz5xdStLLZu2ZA+/oGNX7qhEoXpSS+MXVKpYtQMvv6BrVXIkShYghRQAPrWblcA5s3qblt2qjjTmmbntc8BzZvkqSaCVGSNH7qBE25ck6li4ExqtfaNdQOQhTQ4JrbpmnBtTcUbX751FQBQD2gYTkAAEAEQhQAAEAEbucBAICa0tXVpe7u7oNe7+/vlyR1dnYe9N7s2bPV3t5e1HJQEwUAAGpKd3f3UGBKa2lpUUtLy0Gv9/f3Zw1dhaImCnVv3Yqt2rB6W1HmtWPLHknS3Tc+VPC8Tjj9aJ101jEFzwcAGlFLS4s6OjryGjdbzVQxUBOFurdh9Tbt2DJYlHk1tU5UU+vEguezY8tg0YIdAKAyqIlCQ2hqnaALrz610sUYUoyaLABAZVETBQAAEIEQBQAAEIEQBQAAEIEQBQAAEIGG5QDGbO2ypepZuTzre9s3b5SU+xl6J86dV1MPJwaAXMpbE7V3h9T5Bqm/2//rfIPUVZq+GwCUTs/K5RrYvCnre1PapmtK2/Ss7w1s3pQzfAFArSlvTdTeXVJ/txYeG/7uD72HtufXWRbGZtGGRVqycYkkqXdnrySpY6lf1+dPP18XnXBRxcqG2tfcNk0Lrr1hTNPkqp0CgFpU/tt5LbOljh/54c43lH3xjWTJxiVav3O9ZkyeoZmTZw69vn7nekkiRAEAUADaRNW5GZNnqHP+gbdMk9ooAAAQj1/nAQAARCBEAQAARCBEAQAARCBEAQAARKBhOYpu3Yqt2rB629DfO7bskSTdfeNDQ6+dcPrROumsY8peNgAAioWaKETZtfBOPdXbq6d6e7Vr4Z0HvLdh9Tbt2DI49HdT60Q1tU4c+nvHlsEDQhYAALWImihE2X3PPQcMH7Xg4gPeb2qdoAuvPjXrtOkaKQAAahUhCtEOmzlz9JEAAKhT3M4DAACIQIgCAACIQIgCAACIQJuoEli0YZGWbFyS17i9O3sl5f88u/Onn8+DgwEAqALURJXAko1LtH7n+rzGnTl5pmZOzq+B9vqd6/MOZwAAoLSoiSqRGZNnqHN+Z1HnmW9tFZDL2mVL1bNy+dDf2zdvlCQtvO6aA8Y7ce48zTl3fjmLBgA1hxAFNJCelcs1sHmTmtumSZKmtE0/aJyBzZskiRAFIKeuri51d3ePOE5/f78kqbMzd4XC7Nmz1d7eXtSylRMhCmgwzW3TtODaG3K+n1krBQCZuru71d/fr5aWlpzjjPSeNByyCFEAAKChtLS0qKMjvpnJSDVUtYKG5QAAABEIUQAAABG4nQcU2boVW7Vh9bYRx9mxZY+k0R/GfMLpR+uks44pWtkAAMVDTRRQZBtWb9OOLYMjjtPUOlFNrRNHHGfHlsFRwxgAoHKoiQJKoKl1gi68+tSC5jFaLRUAoLKoiQIAAIhAiAIAAIhAiAIAAIhAmygAQMEGV/Vp75qBsi5zX5//Acf2m9eWdbmS9PxTmjXhjKllXy6qCzVRAICC7V0zMBRqymX81AkaP3VCWZcp+fBW7sCI6kRNFACgKMZPnaApV86pdDFKrhI1X6hO1EQBAABEIEQBAABE4HYegLoQ27C50MbJNDAGGhc1UQDqQmzD5kIaJ9PAGGhs1EQBqBvlbthMA2Mgf11dXeru7h76u7+/X5LU2dk59Nrs2bPV3t5elmUVY3lVG6IWbVikJRuXjDpe785eSVLH0o5Rxz1/+vm66ISLCi4bAAAYm+7ubvX396ulpUWShv5PJEGnGCFqtGUVa3lVG6KWbFyi9TvXa8bkGSOON3PyzLzmt37nekkiRAEAUCEtLS3q6Mhe6ZFZS1TKZRVreVUboiRpxuQZ6pxfnJWaT00VAABAvmhYDgAAEIEQBQAAEIEQBQAAEIEQBQAAEKGqG5YDKL21y5aqZ+Xyob+3b94oSVp43TWSpBPnztOcc+dXomhlFdPjeWxv5/RyDtQHaqIwol0L79RTvb16qrdXj11yqXYtvLPSRUKR9axcroHNm4b+ntI2XVPapkuSBjZvOiBg1bOYHs9jejunl3OgflAT1SDSnZemOygdrQPS3ffcI0k6bOZMPdXrpztqwcUlLi3KrbltmhZce8NBrye1UY2iHD2e08s5UD+oiWoQSeelku+gdObkmVq/c31evcIfNnOmjvv27TpsZn4dmwIA0AhGrYkys1slvVHSdufcS8NrkyUtlNQmabOki51zu0pXTBRDZueldEBaXdat2KoNq7cN/b1jyx5J0t03PnTAeCecfrROOuuYspYNAHCwfG7n/aekr0q6PfXaNZLuc87dYGbXhL8/VvziAY1jw+pt2rFlUE2tvo1NU+vEg8bZscW32SFEAQeL+XFAjNgfFIwVP0CofqOGKOfcz8ysLePlCyTNC8O3SVouQhRQsKbWCbrw6lNzvp9ZKwVgWPLjgLE29h+rUs9fCj9AkAhRVS62YfnRzrm+MNwv6egilQdADcvsLiFTZvcJuTRKtwoovnL8OKAc+AFCbSi4Yblzzklyud43syvMrMvMuvbt21fo4gBUsczuEjKlu0/IpZG6VQBQ22JroraZ2VTnXJ+ZTZW0PdeIzrlbJN0iSe1tR+QMWwDqQ67uEvLVaN0qVCM6HgXyE1sT9UNJl4XhyyQtLk5xAACVRsejQH7y6eLgv+UbkTeZ2RZJ10q6QdKdZna5pMck0fsiANQROh4FRpfPr/PekeOtc4pcFgAAgJrBY1+qXK7HtUga9ZEtAAAUQ1dXl7q7u4f+7u/vlyR1dnYeMN7s2bPV3t5e1rJVEo99qXLZHtciKe9HtgAAUKju7u6h4CRJLS0tamlpOWCc/v7+A4JWI6AmqgZkPq5F4pEtAIDyamlpUUdH7mtPZq1UIyBEoa5kPn9Oyv0MOonn0AEA4nE7D3Ulef5cWlPrxJzPocsMXAAA5KsuaqLSja9zyWyUnQ0NtevDaM+fS/AcOgBAIeoiRCWNr2dMnpFznKRBdi5J421CFAAA1Sf9C8HMXwdW6leBdRGipOyNr8eChtoAAFSv5BeCmb8MTAIVIUrDt+bSt9+4zYZqNZaG7DRiB4DCZPuFYCV/FVh1ISq5NZfuD0niNlsjyAwktRBGkobsTa3DzwzL1YhdUtWUu5qsXbZUPSuXD/29ffNGScMPIj5x7jzNOXd+JYoGACOquhAlHXhrjttsjSMzkNRKGMmnITuN2HPrWblcA5s3qbltmiRpStv0ofcGNm+SJEIUgKpUlSEKjWu0QEIYqU/NbdO04NobDno9qY0CgGpEP1EAAAARKlcT1dUp9a/1w51vkGa/TWrn1h0AoLYNrurT3jUDBc1jX59vurD95rUFl+f5pzRrwhlTC54PDla5ENV9lySTWmZL/eGBhYSossj2C0iJzkYBoBj2rhnQvr5BjZ86YfSRcyhk2rR9fYPaKxGiSqSybaJaZksdP/I1USibzF9ASvwKEihUvrUPY61hoBahNo2fOkFTrpxT6WIUpSYLudGwvEFldk7KryCBwuRb+zCWGgZqEYDqRohCWa1bsXWo/6d1K7ZWVVcFQKGKXftALQJQ3fh1HsrKd6Zpkuygnr4BAKgl1ESh7NK9ewONbqS2VCO1n6KtFFB5DR2ikl+pSeJZfQAqYqS2VLnaT9FWCqgODR2ikl+pzZg8g2f1AaiYsbaloq0UUB0aOkRJhf1KLV2TlZbZ/1ImaroAACi/rq4udXf7vin7+/slSZ2dPgPMnj1b7e3tY5pfw4eoQqRrstLS/S9lquearnUrtoaHCPtf391940M64fSj+QVeEbBuAdSrJNikQ01MoMlHspyWlha1tLQMvZ4smxBVZpk1WaOp5/6Y/EV+UE2tEyVJO7b4RrFc6AvHugVQr9LBRooPNPlqaWlRR8eB1+KkNmqsCFEoqqbWCbrw6lMl+dqSapHU5KSla3US1Vy7U63rFgAKlQ42sYGmEugnCg0hqclJa2qdOFSzI/naHfquqh5rly3V9s0btX3zRi287hqtXba00kUCgAPUdE0UD9LFWKRrcrKhdmfY2mVL1bNyubZv3ihJWnjdNTpx7jzNOXd+2crQs3K5TKbmtmka2LxJksq6fFS/zD62cvWrRZ9aKJWarolKP0g33UVBtl/M1YtFGxapY2mHenf2qndnrxZtWFTpIqEO9axcroHNmzSlbbqmtE3XwOZN6lm5vOzlaG6bpgXX3qDmtmllXzaqX9LHVmL81AkH9a21r28wrwdDozF1dXWps7NT/f396u/vV2dnp7q6uvKevqZroqTGe5BuOjgmgZFaN5RCEmAkXxMFVKPR+tiiTy2MpNBG7TVdE9WokuCY2bUCAADVptDanlJLGrV3dHQc0O1BPqq2Jor2Tkijn6SRVUMbJgDIptxdGJRT1Yao9G2rRD13VImR0U/SyNJtmCTREBtVYaSHK0sjP2A5jYbhta9WuzAYTdWGKKnx2jtVQrYav2qt7aOfpJHVWhumQmvP8vll1mgX3/Q80tNz0S6OkR6uLOV+wHIaD1tGNavqEFVOtRQmiimzxo/aPoxVEoYkHRCIErmCUaG1Z5kX6Ky/ytLIF9/0PJLpG+minaumaKQaorEGzLE+XDkTDcNRzQhRQSOHiXSNH7V9GKskDDW3TRsKRInRglGhtWcjXaDzvfhmzqORLtq5aopy1RA1UsAE8kGISiFMoBTWrdhasw3iM2+5rV22NGsgSoehtFq4rdjoxlJT1EgBE8gHXRyg4tat2Kq7b3xIO7bs0Y4te3T3jQ9p3YqtZZ9HqfhHyZiaWidW3aNlRnu0SvqWm8kq0uEmAFQraqJQccX45V3MPDIfSpztgcRScR5KnDSKr7YG8fk8WiWpZaJWCag+xfgFJD+kiEdNFKpCEjIuvPpUNbWO/oudYswj86HEmQ8klhrjocQ8WgWoXZmPvsmU7VE4aTwWpzB1UxNF55yIwUOJ60/yzTzzGzjfthtDMbq+qDWF/AKSdm6FqZsQReecqEXpW4q12vi82mT7xRm/Kmscxej6YiSj3T5LliFxC60R1E2IkorXOeeiDYuK1l9UUkOWyKwpk6gta2TDbbkm0Bt7ETVytwXFVKu1OsXo+iKX0ToQTZY/EkJ9/airEFUsSzYukck0Y/KMgmuzkhqy5GHB6ZoyidoyHHxLkVuIqBalrtWpVXQgigQhKoekVqsY/UVl1pCl0R8VgGpWylqdXHI9jkeqzpovNC5+nQfUmdH6fgKqXfqHAQc9kodfkqGKUBMF1Jl8+n4qpZGepTeWBwxXq7E+b67QmpNsyyvVsgo1WhuqsZQvWw0Yt8FQbQhRQB2qZAeZuZ6lV4lAVwpjed5cMdoMZVteqZZVqJHaUFVD+SpppFuUUuUDMOIQooAISdcEmb2c0zWBl+1ZevXU43m+DYuLVXOSz/KqpZYmV1mrpXyVkg6Y9dRAv6urS93d3ZKk/v5+SVJnZ6dmz56t9vb2ShatLAhRY5TusoCOPRtX5mNmpOrumiDfBwk3smyddMbUDtAouj6M9batNPr2rYaAWexuK7q7u9Xf36+Wlha1tLRIGg5ThCgcJN1lAR17NrZa6pog/SDhgc2b1LNyOSEqQ+atqNjagVw1DqWobeAWUemM5batVDu1SaXotqKlpUUdHcO/NO/szP5r9HpEiIqQrcsCuipAteNBwqNL1xQUUjuQT6PoYtR81estomoxlv6gaul2ZSW6rahXhCgAqIBi1XxVwy0ioFHVRIjKfLjwog2LuG2GkuF5dtWtWG2XqkGxar6AWtHV1TXUZqqrq6vm203VRGeb6YcLm+yAZ9EBxZY0GpekptaJamqdqB1bBoeCFSor8xYWHTCW3+CqPm2/ea329Q1qX9+gBlf1VbpIFZGsh/S62H7z2ppcH+Xapskv+TKHE0nI6u/vV2dnp7q6uoqy3K6uLnV2dg7Nu1jzrYkQJQ23Q0qeQZfLog2L1LG0Qx1LO9S7s1e9O3vVsbRDizYsKlNJUQ+SRuPJv6bWkR8oivJKanCmXDln1Ie9ovgyb0U2aojN1rN6rYb6cm7T9C/5MiXBqqWlRf39/VmDVoz0rwjTyylUzYSofCW1VpJ/2O/MyTO1fud6aq8AoIiSINvoITYd6Gt9fVTLNk1+7ZcraCXGWruU73zHoibaRI1V5q/n+OUcAKCa5Oqeolbb91VCunYpqbUqdxuruquJAoBEZjuPWmqvUsqy1/J6qRf1dCuwkkpRuzQWdVkTBYwk2yNb+OVdfSpWNwKVUMqyl2u9VFPv7dX4q87M7in4hWbtIUSh4WQ+sqWaH9eCwtVyNwKlLHs51ks5e28fS1lGKkO2sCVVR+/v2R5FQ0/1lUWIKpHMvq06lnYc8Gy90d6PWV7mvAopb6F9ca1bsTWqpid2urFKP7Klmh/XkimzFm3diq2EvzowuKpv6GI4uKqvri6A+fTePprMYBO7jvIJjtke91Jo6CvW9s1WNnqqP1g5+6IiRJVIum8r6eBn6432fszyTKYZk2cMzSu2vMmvGQsJUb5PJVNT64Qx1fTETldJ5bw9mK5FS/quqvb1g9Glaxf2rhlo6AtgNunwkLQbKuU6KvZttmJu39EeRVNrta2lkNkXVSlDFA3LC5T0S5X0SZXujyr5lWCu/q1Gez+pXcqcby759qVVqukzJbU9Y+1jKXa6GEnN144te3T3jQ9p3YqtB71/940PDY2T+b50YLAptGPO0cojlXf9FMPaZUu18LprtH3zRm3fvFFrly2tdJGqUrbn341VPXT+mNTaZHb4WC0/v5dyd0yZLnvmei/G9q12perQMsZIfVEVEyGqQKXsTT2pXaKX9tIZrvnKHn4ObD9lOcNRunPOQsLNaOWpRT0rl2tg8yZNaZsuk6ln5fJKF6luFesXX5X89V5mrU01ytUxZfJ/o/7SrlQdWlYzQlQRFLsGJ3PepZgvho1Ws1Pump9aq2nKR3PbNC249gY1t02rdFHqXjE6f6z0o3VqodYmV81YpWrMRgu+scE4s3ZptEexVLrLgXKjTRQA4CC1/KvGRjTarw9ju7XIrF1KGmzX+oODi6WuQ1SxfwEHAIhXyr6aqrEfqHIbLfjGBuOkdkmSOjs7Rxm7sdT17bx0e6ViPENvrA29C50OB8unoTcqZ+2ypVXbgDxXg+VyLDdbI+RyLbuaGpiX8jZhpW9BVpPR9vXY/SLpOiCf23rFll52qZYbs4y6DlHS6L+AG4vYht40EC+efBt6ozJ6Vi4f2terrQF5pRos52qEXK5lS9XV0DndZqvY7YZKOe9aMtq+HrtfJA3F08+qK5fMbguqZRl1H6KKLbahNw3Ei6ceG17Xk+a2aVXbgLxSDZYr+fP8auoaANnFNAofrQZptH09dr+oZMPxcnRbMNZl1HWbKAAAqt1YG4VnGweV0TAhqtDHogCjGesjWdKPuGnkx7esXbZUPSuXa/vmjUN/zzl3fkXLlH5MR9JAWdJBDZelA59TVqrHt2QrT3resY9FyWe6XOtiLGXOd76laGA+ls+UbbrYzz9WSc3Q4Ko+/TFV45QsL/1++qHO9faYoFrTMLfzknZJxWhgDmQz1vZaSceajd62qxo748zWZiTbw3Qz25OUqt3VaG1YYttd5TNdbPuZUrXLyWe5MZ+pWjrQLNW2Rmk0TIiSStspJiCNvb1WU+sE2napOjvjzNZmJJ+OLEvV7mq0NiyxbVzyma6QeZdivvksN+YzVUsHmqXa1ii+hgpRAAAAxUKIAgAAiECIAgAAiFBQiDKz+Wa23sweNbNrilUoAACAahcdoszsEElfk/R6SbMkvcPMZhWrYAAAANWskJqo0yU96pzb6Jz7s6TvSrqgOMVqPMmz9TqWdlS6KHUhebYe6lu6F+dGWjaA6mDOubgJzd4mab5z7r3h70skneGc+0DGeFdIuiL8OUPS+vjiAgAAlM1xzrmcPayWvMdy59wtkm4p9XIAAADKqZDbeVslvSj1d2t4DQAAoO4VEqJ+Kel4M5tmZodKerukHxanWAAAANUt+naec26/mX1A0o8lHSLpVufcuqKVDAAAoIpFNywHAABoZPRYDgAAEIEQBQAAEIEQBQAAEKHk/URJkpmZpJMl7XfO/Sa8drgk55zbm2Oa8ZLG53o/PW+XpWGXmR0p6RnnXFG7rY6db67pRpqfmR3unHsyDB+0DsPrz8+2jsL445xz+5J5SdqbnkfmspN1aWbjk+ky5vlCSX3hz1dL+pWkNkl/lPS4pJdKekzSHkmnStog6cVh/IfDspPhqc6532dZxgsk7UyPG8o0wTk3mLyfbZtnmcdESXsypj9SkpxzT4RxJzjnBkeYblL4PEekp8uyvGdGmO+kZH6paYbKMdK4YTsqtT4nSvqTpCfC+v47SXdJ+rFz7plc66SUQke7syVtkjRF0v9KOk/SRufcf0fM773yT0SQpMXOuR8Vq6ylkM8+UsRlHans55GD9uORjpHMeWUeFxnjjXfO7TOzF2Y7ZnOVI7WMMa+TLMfp0GfKdjwVS/o8K7//7s3yvjR8PB6SUc5snz99jj1o24xyDUjKIw2fC4c+f/oakePzZO4Xz2r43PGYc253atwxrVcz+6Sk3ZImSZopf17/uqQPSfq1pDMk7XLOfSmf+RWDmb1b/hw0R/66tF/SSufcnaVaZllClKTPSdooabaZNUl6QNJhkv7OzG6XX+Em6bmSPiDp+ZK+KulaM/vP8P4pkg4P8zlN0jfCNB83s+9Kem+Y53/Jd7fwC0nHmtkaSbeFcf9Z0rKMcedJulv+Yn+ZpP+UtERScrIwScslfVu+X6wnwnwnSeoN5bla0q1hujfJX+jSr6en2y3pp2F5Z0tanaWcN0r6maQmMztG0vWhrHeGdXiepNvD8m4ws1VhHW2Tv5h/SP7Au8nM3i5/kT1M0rskfSvMY4Z8CHpZWPbdkr5mZt2SVpjZVZLuCdvqM5IWS5orX3t5r6TXyvcN9qlQvtVh/K9I+n74/F+V9InwmX4exv2IpOdJGjSz50laFT7X1WGcwyS9U9Ink+nMbLGkd5rZb8O6W2Bmy8N0XwjLfkC+Z/xlki4Ny7hN0iVm9j1Jc83suWEaM7NLJf0ovL5f/sKfnu5yM/uppEfl96dbw3TvkPRgRpkvCOvl+xnzbQ5le1TSu83sf0M5PxLW0VvDMyifzhj3HWZ2f1jGP4blnS9/fOyW1CTpN2F9t0n6g6R/DCH4evmC3ibpaUnzw/b6WPh8M+VPek9LWid/8X+ec+4mM5snH372SmqWtFTSy+UvGH8I0x0nf4x8L2zrX8sH6uOdcyeY2VJJf3LO/bOZ/cjMXhSW8VJJ/xPm94Rz7muhnBc55xaZ2a3yx9MeSa9zzr3ZzD4o6bNm1hqW99Kwf3wirIcHJb1K0uYsZUs+6+mSeuTPKcfJn+TT83q5/Lnllxnr4qow7S/kj+nfyO/T8zR8vrggvJ/eRyaZ2RRJXw7LelB+Pz49bN89kl4Ztt0sSe3y55e5ksZLep/88fS4pG+G8e6SP9YvCGU+1syekvQT+fPlXklPpfbjwyT9VdgW+yWdK2mF/P50ffgsk8P6+KOZTZT0A7857MWSvhTK/N2wbqeb2ThJO8xscijvA/LH9x2hbAsk7ZLf749IfaY/SVqcMd9Phc/18rAefyzps2FZ/yDpjfLnXzOzvwzjHibpPWb2s7C+2yT9vZm9SdJrJO2Q3xfuC8ttk/TvYVv/jYbPyW+RD/tnhvl8WtJFYRkmv0//h/yXgteGa0v6+jMtzOsrkr4ov79lnk92yR8775V0qKTHQ/ZKrnvzzOwuHXwNmCRpjfw+ti2sk4vlz2kmqcvMVoRyvz6cFw8zswXy++F2SVMlfV7+evETHXh+O0xSh6Su8HlvNrP7JB0f9ocfSjrRzK4Ly/t3SWvl98PPyB+fJr///iJs8wHn3Nlm9mP5/f2jYTvskr/u322+C6TLwvbdL2kwLCvZ/1dnWcZp8vvpM5JOCMPJa98MZVsT5jcv+azyFS/nm9k1YbrHJU0J6yh9vJn8Neznkk6UD8PrJJ0T1vd+SYc65z6tUZTrdp7Jf5hH5U9sJzvn/k1St3PuWvnai4/KX/jvkrTWOXerfPJO3j9N0m+cc18P4x0W/k0Pf/9I0u/D+8/Ih4wu+ZPp/PDvrCzjHhvK88/yG/AL8gfKT1PTPRlef4H8ybpLPtEn5UlPNzfL6+np5qSWpxzl/ItQztPkL5jz5Q+OZB2ml6fUOvpqWCc7JW0K63BKan3/KTUPC8s+StKEMN1eSd8L0/U75z4Vyi35A3Rl+He8/AlfYZ5Ofl/6k/xJ4/hQXpf6Z+H/e8JyVkq6PyzjTPmd+xgNPxYomS4p7+/lD6D18jVpyXQtqXKeGuaxJZRnmaTfhekfkPRQ+P+BML/k9YezTPdU+CzL5L9sJNM9J0uZ94T1nznfB1LzeDJVzhPDe4vkTyiZ46Y/30lhfXbJ74cr5U9gyfr+o3NulXPuM5LONLOPmtnH5PedD4fpHpO/yL8hvPZ/ko6U9GzYT99vZh+VD65vCfvmyZJOC8MTU9P1ywfqt0v6s3PuX+W/nFwUttvvNfwF5PepZZyUmt8HQzl7Jf1TKO/pqXGfNLNPy18QfyJ/wn27fAA4Tf6CcKSkm+RPfumyJeO+Mbz+sHwAvF9SZ+a8QnkOz7IuXivpZeE1J3+uyjxfDMofB/em9pHXywe0+fIXyZvCvwmpZUyVPy6/HZZ9k3yI+6X8eWC2/AXl0rCNk2P9bA2fL14Y5tEp/437fg3vx73y++8R8hf69P704jB8XFh3XfIBM9kH36rh89BE+RByddiWKyXdk3FeSMr2Ivn9/v6wzY6Qv8htDPN9S2q+r06t+xeFz/Fd+S9U0yS9LlWeozR8XvhTWN/LJL0lbKdrJL0hzOsPYR73ywfaZFvPTW2/Z8N+sVn+i+qZki7R8PXkEA2fc3oyrj/dYX1NDNswfV5IH/dPyh8/D4Zt2iUfUpJtM00HXgNuC+NYWLdb5fe5afLXrORc+JSG97fpGj6v7wxle2VYn6+TP98m2yPZL9ZL2qfhc4dS23J6WK/npbbTizW8H56s4X15X1jPqyV90czeJ+mRUOP1T2E5kyX9i/y5alVYD/8aytMbtvkd8l9ar8+yjKPCsueFz32T/DGflOeFGt6/nwjLuE/S58J+sV/+fP9EmFeyvAmpZSjMY738MXCHpD+n5vus8lCWLg5Cwj5e/kMdIX9QD5rZyc65h8M4J8t/O94m6Rjnbzed4ZxbFd5/kXPu8TA8zzm3PAyfKn9RflLSEWG6N8nvbD+WNM051x3GPUv+G8uTkiaFcd8p6SHnXK+ZzXfOLQ3jHueceywMv9w59yszmyZ/oc6c71ucc9/PUs43O+d+kDHdKZJ2hOW9Tn6j/kRSW2p+x8kfGJPDutoaXmsK6/DFzrlHw7hTnHPbw/ARzrk/hurhQef78nqZ/IOi94TapwlhHm2hTP8naa9zbpeZvcA594cwr1c7534ahl8qf0Ce7pz7mZnNlj/w1sjXWJh8yGoO67ZF/mT0G/kLguQP8mR4vXwA2e2cWxOW8cYwn0PkA+w0+RPHw+FznyN/0TpE0h+ccyvCdJc6525P7QvHyB9gP5c/eHZJGpA/GT0gfwKX/LeR8eH1H8mfPNLTHS5fg3Gc/AHZEqbbkVp2UuYjQln3hrKPk/829iv5QH+cfA3HT8J0rwzzc2EdzZH/trtf/iJ9tHPue2Hc18mfoA+Rv33QHtb7M8n6ds4NhHHTx9PnwuduCeOtDp8xqe07Tb5G5XD5moo7JV2u4QvyPPkT+9fla83ulb/QfUX+Yvp1Sa9MPlM2ZnaSC33Hmdn1kn7qnLvPzJbJh4G3yB/z75U/gf08zPdM59y9YbpTnXMPheFb5C9or5a/ELxIfl/uDuv4OPmL51+Ez/6Mhp+qsCWs7+RCMUX+xH6afKj9lvxFaHsY5/KwPZInM/xQ/vbE6fI1L01hWyyU/5b9hHy4/Jz8/tQnX6P6n/IXgbfJXwB+LH+heVq+1uUO+aA/L3y2x+Vv0V4qf174dvh3hnw4+778cTsufMYT5LfhiWH9/Y98DcZy+ZB+tvz+dWuYx1HOuQ+Gc1KHpP8vfJZTwnp6NHUeanPObQ7DL5U/Hz3unNsUXjvfObckDH8qfM7narhG/1T583l/WLdL5M8bH5L0bvnamu+Hz/mX8hfCfZJeET7XIfL7+q/lt/fc8BktrJ8Phm1wuPwXmQvk96u98rXuXwjr+xNh+0ySD0y3yR/jg/L7yHNDmJCZHSUfKB6SNMU5ty28fqxz7ndh+O3yQeBx+X3Rafh88ipJv5W/GL8tLHOPpJfJh4Rnw+dslg9yE8LnvT8M75avaHgyzP9/5Pddye97Z8ifI/5X0s3hOvqFsJwZ8mEgWV/PkT+//UP4nOPk9/ldYfnTnXP3m9n0sH0eC+tiWficb3TO3ROGr5cPqQqf4b5Q7q3OuR8rh1Bzf7ykl4TlPip/HXg4lHlaWF/fkD8W7g+f4SXy59K3ye8T58pvy7vkj++T5PenQ+WvZY/Jb+cOl3HrzsyOlv+SN07+OvIz+XPg4WF+l8nvD73y+9Mv5I/f/uQ8NJJy3c67XP4gnyS/Qv4UgtV+M9urA6vinXwV80WSZoVqz1ny3zy+Kv/NaGpG9dxP5TfoeDN7Nnyun8kfaH1m9gP5quPkFsXfylfBXiH/zbHVzD4vyZnZGQpVi2b2G4UqQvO3j94kHwBmSmoO1eUvD8N7w/DJZtYlf+C81sxOkD+ZHC5/4j5P0sNm9k35Dfu4/DeWD5nZBvmDaK58jc2nJG00s/fI7+TPhjKk18Xfh2Xvl3SWmT0W1skTZrY9LPdXoUr39fIXw9fLf0P7ivw3uT8k75vZvWFerzKzd6W3mfytiveF4Xb5E9PQMsJ0yTL2y1crPxbmkYxzTvgc98pXayfVsMk2e2VYL0l172flA8B++YPvI2HbnJmsKzN7Ooz7IvkwcFoYty+U88GwjPeEZcyVP3B+EbbTd+TD5MvlazCWJNsp7AvXyweYPZI+bWbfCOv+r+SD2evkD/Afy1czPxDe/5r8SeF7kj4WwtN++ZPKd+W/9Z8TyvlXqXL2mdmTOvB2x8XyJ8IeSVfJH/yzwmvXy7vGzJJb45eE7XuS/K22DjO7UP7CcE1Y77PC8FvlLyiSr57/upldrOHq+eelhl+QGj5U/gKYyydT5XmP/C3cdvlv8bPkL1TPlT/JT86Yb3Ly+ofUPJJbMPfLB4qVYdyHw3x2yl98dsrvT0+H7TbfOffX5m+n7nf+VuNPQtmfkN8vB8PwofIXxp4w3d+EY6JNPiD9IKzzZHiCfA1fMvyNsN0+KH/cL5Ov1dqlcNtV/kL4ZfnbW5I/5/0kLO/9ZjY3jPtx+YCTXvYR8heLu+QDXo/8MXNqeP9FYf53yYfc6zPKf6eZXSu/Xz8cvlx9ST7IfTOs4+5Qrk+bWY/8RcvJHy8fNN98wBRqM4IXS+pzzn3czE4Ln3uupJeGdfhD+XaQyfs7wroYLx/W3yDpNc65V5nZYudvDX9QPgQeHqb7oaTnh+GXh3X0CkkTwnSnyZ8rXisf6JL1faakNall3yfp2tR0PzCzf9CBt13PkXR6xmf9SijTafJB5k/Oua9Iw7elJd1lw7eoByWd6py7MHym6clncs69NjWcfv3t5psfrJQ/V7xH/rwgSWc4594axn2NpOeYmcl/oX9rxnRnu+Fb4tOdczeFct4a9pnkM93vnNtovqJghZl9K+x/35Q/Z83S8PH7lVCOq+TPCSYfXHOGKPlz3U3yX9iOd859KBx7O8O5J2ne8FGFGr70+Snsc7Plj5VDNXx8/5+k5jDuMvnrxRfC65m+pOEmQ8dLekdY3pvCvGbIh95D5c9v/x7eP0nD56GcyhWinidfhXqF/MXpotTwFeHfc+VXxDflv4F8UP7BxUk13Bkarp59q/w3mDvkD5Bn5S+e58nfw90mf2F6Sv4kdJpz7jNhg/1Bfqd8jnzImip/D/xp+Qv9DfIr8IXy306fTs3vHEmbw0n4Afkakc9kDC9RqLY3XyP2rHz6Py+89hb5b6Qflf+GeIWGN1ivc+4bZva28LmTmoLMz5xeF+3yF5FPyh9YHw7r4mfyO8Z58ife5P1keG6YxxvkTwrnZLyfzCvbNrsoz2VkzuMI+ZPrfPnq0lPkv5Wl1/FT8qEr2e5nhfW1RD6QXSp/cPVkrKs7wvY6LcznFc65D5hv05BtGePka2LT22l1ju2UbJuvh9qnZN0fGYbPkz8Q06+9PXzeZPjlqe20JGy3XOVM77P3hs/3O/nwfocOPC4u0bBvpGoPtzvnOs23oXgyvL9cfv/OHP66fEDska8FkaRV4VvuP0mamWP4MxrZQeUJw7+Xb7Pxl2E73D3CfNPzmCx/G/4O81X2+5xzXzSzV8m3s0qG/yi/Pf8gf1JcG+b1mIZvNX5JITil55Fjurvkv4D9i3wtxotHGH6x/H72L5KWhpr0VWZ2dmr4OfLBJNfyfpYa9yRJF2ZZ3m/DZ3lI/gtqrvczy781rN8eSbvM7CXy59D3ye/rf2O+/VLS9uV98he3Z+UvhveG/01Sj/l2jSZ/TH4vfDF9xDm3ysz+Q/6L8vvk2yH9Iv1+er2kxr1C/ovjp0O5D5H0aHg9mcf7cizjoPmG4bdK+nOO6a6QD4jJZ7pXvk1qMpz5Wc+Tr+m6KePzf8R87V56+KXyX/gzP5OF4e/lGH4gbNN/D/8n5bk9Ne6JqbLdnmW69HxvNt+mLb1N05/pPZKeMV8jld4Xdjl/uz7z+E0Pz9HIHk4d1+eH15Zr+NyTPs/cKh96h8Zxzj1rvgH7kxnH9yoNB6bk/PVEUluYIX0O+VNqedOcc/9qZuvl963faGznN0nlu513hvxF+7/lw9FAluG/dc590nzV26flTwKHyZ/oxsm3fbkmzG+B/ElhnKQm59wnw+vvl7+ob5Wv4XmF/DeGFeE2wh3ybQj2S/qLEIau0nDV5GTn3BfCvNKvJ/N7v3z15eeTeaXnG4a/7Jz7UJjHX4cL70nyt+t+ZGYfc859PryfHvefnXOfCMPvkq9ebJNv2/S1jM+cXhcflq/iPl7+1o3JV0t2hPX7Yflq/ePlb3UtD8PNzrl/M187kjQcTr+fzCvXNstnGel5JOOcL38QbJevSdqUsY5fIX/RTz7rcc65vzOzV0ua45z7So51NU4+ZCySrxF4k3PucjP7hPxFOnMZ45xzt+S5ndLL+6Dz7RBkZn8bts2pYX3+OHkt/X6W7XSifO1prnKm99l/kb8YHin/jexBHXhc7EuWAYzGwm16880nXhWOpy845/4+vP8559zHw/CnNPxDhhPlG6e/QMO3dVpS417pnLu53J+nGMzseA1f4NOf76DPGsb9rHwNSfrzf8YN3xJMDxe0XjLK9myq5ivr6znmcbIbvs2fbNP0ZzpZ/svczRn7wlUjzRdeuWqiPix/b/tSDd9myBx+t/lfrr1Tvor3d/K/PPk3+QvxX5nZzjB8Ver1zOlul7+9kbz/Xkl7zd9GmCf/be+d8rfo9uvAqsmrwrdEy3g9md+rwnRK5pWebxh+q5ltTc1vYmp5Lw2vufB+etzLzOyPGZ/v3DDdhIzPnLkuDk0Nf0X+G+f4sF7fJX8iSN5/Tqpsh2WstwPez7GdLhnLMlLTJeO8JWN5yWe6PsfwRWaWtC8Zb2bPz7GuTP5W3MbUuB+T9NfytyMz53uV+bZj+WynA5YX1lsyfHhquttTr1nmcGo7vUc+BOUqZ3qfvTSU+W1hvT2kA4+L18jfNgTy8f7wpTZ9PL3d/K1/k/81664wfKX88fuX8vveL3XgbZ30uK+UVJMhSv68sCYMpz9fts+anC8f0oGfv8PM9mQZLnS9pMv2ylR5cr2eTfo2/5XK8ZnC+TC9L4w2X0iSc67k/yS9OjXcMdKwfHuEOfmMGztdOZZRK9NVc9n4THmNOyfbMcc//mX7p3AuLsHxVLP7oUp7fSpovWSUbc5or8d8Ps4thf3jAcQAAAARnlPpAgAAANQiQhQAAEAEQhQAAEAEQhQAAEAEQhQAAECE/wc8Ak+NJ4J1nQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,10))\n", "den = dendrogram(linkage(data, method='average'))\n", "#plt.axhline(y=30)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Desafio 2\n", "\n", "Visualmente, com base no dendrograma acima, qual seria o melhor corte para realizar a clusterização hierarquica?\n", "\n", " [ ] - 2 clusters\n", " [ ] - 3 clusters\n", " [ ] - 4 clusters\n", " [ ] - 5 clusters\n", " [ ] - 6 clusters\n", " [ ] - 7 clusters\n", " [ ] - 8 clusters \n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Desafio 3\n", "\n", "O agrupameno dos dados foi realizado a partir do calculo da média (average). Realize um estudo para comparar com outros linkage methtods. \n", "\n", " single\n", " complete\n", " average\n", " weighted\n", " centroid\n", " median\n", " ward\n", "\n", "Compare os resultados de pelo menos 3 métodos: **single**, **average** e **ward**\n", "\n", "\n", "Referência: Leia a documentação oficial https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage\n", "\n" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [], "source": [ "## sua resposta aqui.....\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## AGNES\n", "\n", "AGNES (AgglomerativeClustering) é uma estratégia de agrupamento de dados do tipo botton-top.\n", "\n", "Como parametros deve ser passado o numero de cluster que foi encontrado no dendrograma e os metodos utilizados affinity e linkage." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,\n", " 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,\n", " 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2,\n", " 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2], dtype=int64)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cluster = AgglomerativeClustering(n_clusters=5, affinity=\"euclidean\", linkage=\"ward\")\n", "cluster.fit_predict(data)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3,\n", " 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1,\n", " 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 0, 2, 0, 2,\n", " 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2, 0, 2, 0, 2, 1, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2, 0, 2,\n", " 0, 2], dtype=int64)" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "cluster.labels_" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGbCAYAAAAGO97oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAB3XUlEQVR4nO3dd3wb9f348dfnTsvyzHCcvTchIcFAEiCsMsootKxSSim00L377aCD7vHroHvQ0pYWWgptgUKhZUMYCSRAQkL2Xs7wtiVr3H1+f3yUxLakxJFlncf7yUOPWHfS3VuHLL/1Ge+P0lojhBBCCCG6z/I6ACGEEEKI/kISKyGEEEKIPJHESgghhBAiTySxEkIIIYTIE0mshBBCCCHyxOd1AABDhw7V48eP9zoMIYQQQoijWr58+QGtdWWmfb0isRo/fjzLli3zOgwhhBBCiKNSSm3Ltk+6AoUQQggh8kQSKyGEEEKIPJHESgghhBAiTySxEkIIIYTIE0mshBBCCCHyRBIrIYQQQog8kcRKCCGEECJPJLESQgghhMgTSayEEEIIIfLkqImVUuoPSql9SqlV7bYNVko9rpTakPp3UGq7Ukr9TCm1USm1Uik1ryeDF0IIIYToTbrSYvUn4IJO274APKm1ngI8mboP8FZgSup2M/Dr/IQphBBCCNH7HTWx0lo/B9R12nwpcGfq5zuBy9pt/7M2lgAVSqkReYpVCCGEEKJXy3UR5iqt9Z7UzzVAVernUcCOdo/bmdq2h06UUjdjWrUYO3ZsjmEUgBOD9Q/AjhdAuzB8Hky/AoJlXkcmhBBCiF6m24PXtdYa0Dk873atdbXWurqysrK7YfQMrWHJj2DLExBvhkQr7HwRnv8GOAmvoxNCCCFEL5NrYrX3YBdf6t99qe27gDHtHjc6ta1vqt8ITdvBTR7eph2It8Cel72LSwghhBC9Uq6J1b+B61M/Xw882G77e1KzA+cDje26DPuepu2m+68zJwb1m4/tWC01sGMx7FsJrpOf+IQQQgjRqxx1jJVS6m/AmcBQpdRO4Fbge8C9Sqn3AduAq1IPfwS4ENgIRIAbeiDmwgkPA2UDnbr97ACUdHFMvnZhxR9g98ugLECBLwQLvwDFVUd9uhBCCCH6jqMmVlrra7LsOifDYzXwke4G1WtUHmcGqUfiQLuWK8sHoxd27Rg7X4Q9y8Btl5w5MVj2czjjW3kNVwghhBDeksrrR6IsWPhFqJxpWq6UBRUTYeGXwB/u2jG2PmUSqQ40tO6H1n0ZnyKEEEKIvinXcgsDR6gCTvkMOHEzS9AXPLbnu/HM25UyxxRC9CiNZgU7eYnNREkwiUrOZCrlFHkdWr9URytPs55t1FJMgFOZzCxGeh2WEAUjiVVX2YHcnjfiZGh9uGNXIIAdhFL5sBGipz3BGpaxnQRm0shKdrKevXyIMyjhGL8oiSNqIMLveJ44DhpNCzEeYiX1RDidyV6HJ0RBSFdgT5t4HhQPM4kUmPFZdgDm3pwazC6E6CkR4rzMtkNJFZiie3EclrLFu8D6qefZRJwkul1pwwQOi9lAnOQRnilE/yEtVj3NF4LTbjUD2A+shtAQGLcIioZ4HZkQ/d5emvBh4dCxbIqDy1ZqPYqq/9pObcZq0TYWtbQygvKCxyREoUliVQi2H0YvMDchRMGUU5SWVAEoYDDFhQ+on6sgzAFa07YncSkl5EFEQhSe9EUJIfqtwRQzigrsTh91PiwWMMGjqPqvU5mMH7vDNhuLyVTKeDYxYEhiJYTo166mmslUYmPhw6KEIJczj+HSLZV34xjMJcwmTAA/FjYWMxjO2znB69CEKBjpChRCeGoD+3iRTTQTYxJDOY3Jee02CuHnaqppI0GMJGWEUKi8HT9XDURYzEa2UUcFRZzKJCYw1Ouwum0WI5nJCJppI4SPIH6vQxKioCSxEkJ4ZilbeIp1h2btNRBhFbv5IIvyPiYnhJ9QL/kjX0+E21mcmkFnaj/toJ63MosTGO11eN1moaROmBiwpCtQCOGJBE6HpArARRMjyYts8jCynvcM6w8lVQclcHiMN3EzDLYXQvQdklhl4iSgdh3UbzaLKAsh8m4/LVgZuuRcNJs54EFEhbMtS1kCB5cGogWPRwiRP9IV2FnNq/D67wCVWsImBCd/EsrHeR2ZEP1KCYGMpRAAyvr51PwSgjTRlrbdRRMmx1UehBC9grRYtde6D179LSTbIBkFpw1iDbDkB6YVSwiRN2UUMZbB2J1arfzYLGSSR1EVxmlZyhJMparXjAMTQuRGEqv2dj4P2knf7jqwb0Xh4xGin7uCeYxjCD4sAtgE8HEeM/rF7Lgjmc5wzmQK/tRr9qVqPV3KbK9DE0J0k3QFthdrzpxYaRcS6dWEhRDdE8LPuzmFZtqIEGcIxfg6teQcTRKH19nBG+zGh8WJjGMGw/NaUiGBw6tsZzW7CeKjmnFMpapb51jAJKoZTx2tlBCkWApoCtEvSGLV3rDjYddL4MQ67dAwZLonIQkxEJQSyqm8govmLyylhkYSqfFaO2lgM/u5OE+tP0kc/siL1NJy6BzbqaeacZzLjG4d249NFWX5CFMI0UtIV2B7VSdA+Xiw2w0etYMwdhEUV3kVlRAii/XsZS9NhxIeMK1LK9lFLS15Oceb7KGW1rRzvMxWmmQGnxCiE2mxak9ZMP+zsPNF03JlB2DsGVA11+vICidaa7pES0d2TDBzpTW01oCbhNJR5hoLkSeb2E+cDN33KLZRxxBKun2ODezrUGvrIBvFduqZlcdCmA4u+2gmhJ9BhPN2XCFE4Uhi1ZnlMy1UYxd5HUlhxVtg+S+hfhNYtkmIZlwF48/O/ZjNu2DZz6GtHlDgC8LcD8FQ6VYV+VFCEBuF06kqlAUU5Wl2XQlBFGSsO5WvcwCsZjcP8wYajYumkhKuppoyqWAuRJ8izQfCWP5LqNsAbsKUm3BisObvsH91bsdzEvDS96F1Lzhxc7xYE7xyWyrREqL75jA64wByG4spDMvLOeYxFjvDR2UAX95mL9bQxL9ZQYwkcRySuNTQzF0sRWdM6YQQvZUkVsJ0/9VvSp8R6cRh039zO+a+FZlrf2kXdr6Q2zGF6KSCMFcwjxA+AvgIYFNGiOuYf8yzC7OppJRLmZM6vg8/NoMI8x7mZ6wcn4uX2UqyU7FUjaaRNvbQmJdzCCEKQ7oChRlTZdmmtSptX46tS7GmLDXBkhBtyO2Yos/RaNZSw0p2oVDMYTRTGZbXUghTqeIznMtuGvFhMZyyvB4f4DhGMo0q9tCIHx9VlOb1HE1EM7ZLWSha6DxLWfQGLpo32Z0q82EzjzFMZGje33ui75HESpiB6jrDx7qyYeis3I45eApk+oCxgzLGaoDQaP7Bq2xk/6HB35vYz/GMzFsphINsLMYwKK/H7MyHzRgG98ixJ1PJdurSWq0cXEZR0SPnFLnTaP7GK2yn7tB7eyP78lKCQ/R90hUozOy/6Vd0nAWobPAXw6S35nbMsjEwfG7HY1oBk8QNpFmWA9gO6jskVXC4FMJemjyMrPeZy1hKCXUYy+XHZj4TpHBoL7SR/R2SKjDv7VfYSj0RDyMTvYG0WAljwlugZLgZU9VWD5XHm6QqVJ77MefebMZTbXvGdAGOWmBmGVr5GfsierfOSdVBGs1mDnheGDNGglbilBHK23isXAXxcROnsYTNrGUvIfycwnimMzzv53LRNBIliE8WfM7RxiwlOBSwhQMMYmzhgxK9hiRW4rDKWeaWL8qCMaebmxhwivBjY+F06t6ysAh5+NHj4PIIq1jJLqzUiJgzmMoCJnoWE5jlfc5kGmcyrcfOsYY9/IdVJHBw0UxgCG9nbl7LRgwEIfxYKNxOI+MUiqD8WR3wpCtQCNEjZjEy6zDeGYwoaCzt/ZfVvMEuHFwSOMRxeIb1rGa3ZzEVwm4aeIDXiRAngYODyxYO8HeWeR1anzOH0RlnhCoUU5FVOgY6SayEED2ilBBXMI8ANsFUKYQgPt5JNSGPWkgSOKxgZ9og8QQOi9noSUyF8hKbOyzLA+Cg2U0Ddcgi88diMMW8jTn42723i/DzLk7G73G3svCetFkKIXrMwVII26lDoRjH4IzFNgslRoaSIinNtBUwksJryLKuoY1FM20MprjAEfVtsxjJVIaxnTpsLMYxGEvaKgSSWAkhepgfm0lUeh0GAMUEsbHSWqwAhtONiRp9wHiGUENT2pg3B5dhHk8k6KsC+Jicpwr/ov+Q9FoIMWAoVNauGi8H1BfCKUwgiK/D2KCDJR1k8LoQ+dO/P0mEEP2CRhMhTig10zBXrcSIEs+4bzt1OR+3LyghyM2cxrNsYDP7KSLAAiYyi5HdPraLJpqH/z9C9AeSWAkherXX2M4TrCWOg4WimnGcw/Sc1unzYWVd0tjrWlaFUEYRl+S56v3LbOEZ1pPAxUaxgIksYoos7SIGLPlqIYTotdZSw39ZTTRVeSmBwzK28hRrczpeED+lhDLuG9vDS+L0RyvYyZOso40kDi5xHF5kMy+wyevQhPCMJFZCiF7rWTaklQhI4PIK29IGYXdFEoeWLLP/9tOcU4wD2XNsSKtAnsDhBTahs7YNCtG/SVdgf+EmoeZVqNsA4aEweiEESr2OSohuacxSIkCjaSORdR29/TQfKgI6neGHFk+Okkh1UaX/0W/s5+UWekK2EhVxkiRxpaaTGJAkseoPElF48dsQOQBODCw/rH8A5n8OKiZ4HZ0QORtOGVupTdvux6Yoyzp3S9nCk6xNLdoCy9jObEZxIbMoJogfe0CWW+gJlZSyh8a07SWE8EmHiBig5J3fH2x6BFr3mqQKwE1Asg1e+y1oaY4Xfdc5TE/7A+3H5hymZRy83kwbT7KWZLtV3BI4rGQXO6nHQnE20/BnOObZPbhGX391LjPS/v/4sDiXGTJ4XQxYklj1B7uWmK7AzqJ10Na/p5CL/m0UFVzPAsYzhBB+hlHKZcxhHuMyPn4D+zL+QU/g8CY1AJzIOC7jBIZRSgg/4xnCe5jPKCp68qXkzEWnLfbrNY3GwWU8Q7iWUxjDIEL4GEEZV3JiXko4CNFXSVdgf2BlG8egQcn/YtG3jaKC9zC/S4+1sxRhUIDdbs8MRni6EHRXNBLlIVayhVoUMJlhXMwsSrLMaiwEjeYFNvEim2gjSTlFnMcMbmChZzEJ0dtIi1V/MGaRGVfVgYLS0RCScSNi4JhKVcbWHRuL4xnlQUS5SeBwBy+whVp0qsVqI/v4Ay/i5jAbMl+eZT2L2UgbpoW8kSj38zqb2O9ZTEL0NpJY9QcTz4Mh08EOmATLF4JgGcz7kNeRCVFQRfh5Oyfgw8KPjR8LHxZnMpWqPrQe3pvsIU6yQ8kCN1V9fgP7PInJwWUJW9LKKyRxeYb1nsQkRG8k/UT9geWDUz4NDZuhYQuEBsGw2Wa7EAPMDEYwniGsYy8OmilUUkaR12EdkwO0EO+UwIBJYmpp9SAiiBLPOtarLs8xxUjyJntopo1RVDCRoTIYXvQZ8pe3P6mYaG5CDHBFBDiBMV6HkbMqyghgpyVXPiwq8aY+XZgANlbGUhX5jGkvTdzJSzhoEjgEsBlGKdcxX+piiT5BugKFEKKXmU4VYQIdhuLbKMopYhKVnsRkYbGIyWnJjQ8rr6Uq/smrtJE81OUYx6GGJpawOW/nEKInSWIlhBC9jA+b93EqxzESPzYBbGYzmhtYmNPi0/kyn4lcwEzKKcLGYjhlXMNJjE1Vtu+uRqI0ZKi2n8RlBTvzcg4hepp0BQohRC9UTJC3c4LXYXSgUMxlLHMZ68nZhegLpMVKCCFEr1BOEYMIp233YXFCHyqXIQY2SayEEEL0GpczjyL8BFIlXf3YjKCc+cjEHNE3SFegEGLA02i2Uss+mhlMMZOo9HQs00A2jFI+wdmsoYamVLmFCQyRcgviqPbQyHbqKCHINKrweTSLVBIrIcSAFiPJnbxEHa04aGwUxQS5gYWUEPQ6vAEpgI85jPY6DNFHuGj+yatsZD9u6nf4ESyuZwHDPChPIl2BQogB7UnWsp9m4jg4uMRxaCTKw6z0OjQhRBe8zg42sp9Eu9/hKAn+zrIOqxcUiiRWQogBbRW7cDp9+Jq1+fZ7ui6fEKJrlrM9baklgBZinqxUIF2BfdW+N2DdP6F1HxRXwfQroPI4r6MSos/JtkyLTt2EEL1btt9hhVnjstCkxaovqnkNlv0CGrdBMgqNW+GVn8HeFV5HJkSfM43haQPVFTCWQdjyESlErzebUfgy/K4G8MkYK9FFb94DbrzjNjcOa/7uTTxC9GHnMoNSggRSM4j82BQR4BJmexyZEKIrTmIcw1Pra4Kpe+bH5nLmeTKbtP93BWoN9RtMl1nZGCgf53VE3aM1RPZl3tdS071juw4ceBPiTTBoChQP697xhOgDSgjyEc7kTfawhyYqKeE4RhIcAB+PQvQHPmzey0I2sI9t1FJKkNmMptijWb39+5Mj3gIvfR8i+1MbNAyaDCd9Emy/l5HlTikIlJnkp7NQee7Hbakx1yrZBmjQLoxeCMdfb84pRD/mS63FJ21UQvRNFoppVDGNKq9D6eddgSv/BC17wImlbnGo2wDrH/A6su6ZcgnYgY7b7ABMuTS342kNy34GsUZw2sy1chOwa4m5CSGEEKJL+m9i5SZh7+ugO03BdBOwY7EnIeXN+HNgymXgC4PymX+nvQPGnpHb8Vr3QrSWtDlQTgy2PdXdaIUQQogBo/92BWqXrJOl3URBQ8k7pWDyW2HS+ZCIgD8Mqhs5shMn68rxTjzzdiGEEEKk6VaLlVLqU0qp1UqpVUqpvymlQkqpCUqppUqpjUqpvyulAkc/Ug+wA1CWaaC6BcPmFDycHqEsCJR0L6kCKB0FVoYxZ5YfRp7cvWMLIYQQA0jOf5GVUqOAjwPVWutZgA28E/g+cJvWejJQD7wvH4HmZM4N4Cs6nDTYAQiWwoyrPQupV7JsmHszWAFQqUUr7SAUD4fxb/E2NiGEEKIP6W5XoA8oUkolgDCwBzgbeFdq/53A14Bfd/M8uSkbA2d9z4ypat4FFRNh9KngL+recbUL9Rsh3gqDJkGwLD/xemnY8XDmt2D7c2a8VeXxMKK6786eFEKIfiiJw1bq0GjGMwR/qnaT6D1yTqy01ruUUj8EtgNR4DFgOdCgtU6mHrYTGJXp+Uqpm4GbAcaOHZtrGEcXLIPJF+XveC01sPSHJqlSygySn3wxTH1b/s7hlXAlTL/c6yiEEEJksJkD3MfyQ/c1mrczt1eUGBCHdacrcBBwKTABGAkUAxd09fla69u11tVa6+rKyspcwygsreHl2yBaZ8oSJKNmIPym/8D+1V5HJ4QQop+KEufvLCNG8tAtjsM/eZVm2rwOT7TTnVHPbwG2aK33a60TwL+AU4EKpdTBlrDRwK5uxth7NG03tZ7SyhLEYesTnoQkhBCi/1tD5pU1NLCK3YUNRhxRd8ZYbQfmK6XCmK7Ac4BlwNPAFcA9wPXAg90NstdIRrPPwEu0FjYWIUTOdlDHYjZRTyujGcTpTGYwxV6HJURWMZI4uGnbHVxi9PESQv1Mzi1WWuulwD+AV4E3Use6Hfg88Gml1EZgCHBHHuLsHSompBccBTObbvhJhY9HCHHM1rCHv7CUjeyjllZWspPf8TwHaPE6NCGymshQrAz1Bv3YTELWde1NulUASWt9q9Z6utZ6ltb6Oq11TGu9WWt9stZ6stb6Sq11LF/Bes4Owqx3p5aTSb3B7YBZrHjcIk9DE0IcnUbzKKtJtvvmrzGtAU+x1rvAhDiKKsqYw+gOswD92EylitFUeBeYSNN/K68fSazJlF8IDzUz4Y7FmNOhdAxseMiMtxo1H8YuSl+7TwiRkUZTQxNxHEZRjq+A08VbidGWpdtkG3UFi0OIXFzILKZSxevsRKOZwyimUoXKtnKG8MTASqy0C6vuNnWtLJ8plTB4KlR/FHyhrh0jWgsrfg+R/aaY5pr7zPYJUkhTiKPZRzN/4xWixFEoNJpLmM1xjCzI+YP4sy10RTHBgsQgRK4UiikMY4p0/fVq/XcR5ky2PgU7nzclEg6WSqhbByvv7NrztYalP4aWPWYmYDIKbhzW3ge163o2diH6OBeXv7CERqLEcQ5NF3+QFQUb3+THZhYj8XX66PNjs5CJBYlBCNG/DazEastj6YsKu0moWda1xYabd5oWK91pZoYThy2P5y9OIfqhzRwgQfrkDweXV9lesDgOdqfYWATw4cNiIROZw+iCxSCE6L8GVldgIpJ5u+vAi9+FosEw4VwYMj3z4+Kt2cstxJryE6MQ/VQ0y9gmDbRQuDkufmxOYzKg2U8L4xnCPMbKOBUhRF4MrMRq6AzYs5y0Ap9oaNxqbvtXwYyrYPw56c+vGGeSsM4sP1SdkPdwhehPxjIYJ8MIpwB2QceMbGQ/97IMBxcN1NHKG+zmJk5jEOGCxSGE6J8GVlfg9CvBV2QGnWfjxGHNvZDM8A3aVwQzrug4A9DyQ2gQjDsr//EK0Y+UU8TJjE+bLj6UEmYyoiAxaDQPs5JkKqkCcNDESEi5BSFEXgysFqviYXDmt2DzY1C3AVr3QiLDoFllQ9M2M2OwswnnQtkY2Pw4xJugaq5JqvxFPR9/X6BdU8rC8kNxlVmoWoiUtzCdcQxmGduIkWQWI5nLGPbSRC2tTKGSED1XuqSVOK2kj6fUwBZqe+y8B0VJ0ECECsIU4U/b7+CynxZC+KiQ1jMh+qSBlViBaV2aebX5+ZWfwt7X0x+jHQiUZj/GkOnZx2ENZAfWwGu/Ma19WkPREDjpY1BSmNYI0fspFFOpYipVANQT4cc8QRvJQ485jhFczrweOX/gCDWzQhkSnXxx0TzKKl5nJz4skrjMZTQXMOtQNe032c3DvIGLxkUzjFKuopoyulgKRgjRKwysrsDOJpybXthTWVA8XJKBYxWtg1d+YgbxOzFThqJ1D7z4PTPzUogMfsfiDkkVwGr28AKbeuR8AXxMT80IbM+PzQIm9Mg5AZ5jAyvZlVrXzaz5toKdPM8GAGpo4gFW0JYqQZHEZQ9N3MVSdNbKW0KI3mhgJ1ZDZ8K0K8xaf74ik2SVjoKTPul1ZH3PjsXpZSjAJFj73ih8PKLX20l9WlJ10Is9lFgBXMxsxjEYHxZBfNhYzGMM8xjbY+d8mS1ppSYSuCxla2r/1rSB/RpNI1H20NhjcQkh8m/gdQV2NvFcGHsaNG6HQIlJrMSxa6vP3DKlXbP0jxCd1JGl/AkQz5Jw5Wo3jSxjKy3EmEoVV1NNCzEaiVJJSY9WXddoYllez8HldZqIZmyZslAFLUUhhEazjr2sZBcKmMNopjBMypEcA0mswLRWDZnmdRR929CZsGuJ6QZsT2sYPMWbmESvNpns63RWcoQxjsfoNXbwKKsOlVfYRh2vsJX3cWpByisoFFWUUUN6rbvhlAMwiUq2U9dhcWiAJC6jZIFdUSAazb94jfXsO9TCupH9HM8oLuZ4j6PrOwZ2V6DIn+HzzNg0q90AYDsAI6qlFVBkFCbADIZn3Hcps/NyjgQO/2V1h/IKCRzqifAaO/Jyjq64gOPwYx/6zq8w47ouYCYA8xhLCcEOY7/82MxngqxhKApmJ/Udkiowvy8r2cneDF8MRGbSYuUVraGtziQiwTKzra0B0GbmYl7O4ZpB5b6Q6ebMRTJmuvJCg8A+wqwpywenfhG2PGFarmy/KUMx+tTczisGhCs5kefYwBK2kCDJUEp4G3OoSrXkHOTg0kQbxQQIHMPH1m4aDs26ay+Jyyp2M5UqygilDWbPt7EM5kYWspiN7KWJ4ZRxGpOpwvzuB/FxE6ezhM2spYYQfk5hQtbEU4iesIn9GZedctFs5sCh96s4MqW19zNOqqur9bJly7wOo3Bq18Lrv08tg6OhdLQpTBrZBygIV8K8D5p6Wbna9was+INZxke7pqtz3geOXEaiPe3C6ntg+zOHl/GZfDFMvkhqU4mCWsJmnmEDOvXfbEbzVo7rUjJUQyN/5KWMfywU4MNGoTiLqZzSg7MChegLXmIzT7EOp1OXtB+b85nZoxM8+hql1HKtdXWmfdIVWGiRA/DybWYxZzdhBnw3boWW3eZnN2F+ful7kIzmdo7mXbD8FxBrMLPydNIkc0t/3PVjrP0n7HjWxOPEzG3jQ2b2nxAFsordPM164iRJpMoQrGQnj7OmS8+voozSLF1pGtPNESfJU6zjTfbkMXIh+p5ZjMw6RH1GgVZH6A8ksSq0bU9nXm+wM9eB3S/ndo4tT4DTacFb7ZiErakL40q0C1ufNK1o7Tlx2PhwbjEJkYPFbEhrbUri8irbSWZohepMoXgXJ1NBEQHsrAVCEzg8l6opJcRAVUqIy5lHAJsgPgL4COLjaqozrhQgMpMxVl1Rvxl2vmBab0aeDEOPy707rHWvSXKOxomZ8VG5niNTUUFlm2MerYvRiZvXmklMBjCKwmnOUmrAQXM/r1NBmHmMYQjZxxAOppiPcRY7qaeWVv6TmiGYfq62vMUtRF81jSo+w7lsoxaFStV8O8L6uiKNJFZHs/7fsOk/qRYgbVqRhs+DE27KLbkaMh32v5HeGtSZHYSKiTmFzNAZUL8xPTlyE1A+7ujPt4MQrDCD6zvryvOFyJNRlLOJA2nbNZo11GCheIWtvJ0TjthVoVCMYTCjGMQTrCWSYb1AKWsghOHHZjLDvA6jz5KuwCOJ1pquLyfOoRYgJwY1r0LdutyOOeY0M4Bctf8GoFK3FMtvltQZlmPdkHFngT/c8Rx2AMYsglDF0Z+vFBz3LlORvj07ADOuyi0mIXJwDtPxH+Hbsosmicu/WZmxFaozC8W5zEg7ph+bc5D1P4UQ3SctVkeybyVkGsp3MLnKZSFmXwhOvxU2PAw1y1MJzxngtMHOFwENoxfCpLceno13rAIlcPrXYcODZpFpfxjGnwtjF3X9GCNOBP8nYf2DpmuxfBxMuwzKx+cWkxDHwMWljSTDKONGFvIM69lNIzESxDOMrdLALhoYy+CjHnsOoykmyGI20ECUUZRzJtMYlseipEKIgUsSqyOxg5m7+5QFdjdWnA+UwnHXmFt7Uy/N/Zidhcrh+PeYW66GzjA3IQpEo3mODbzEZhw0AWzOYhpXY2Y138VSNmfpGjxSy1Znk6k8YuV3IYTIlXQFHknVCWQdBD56QaGjEaLfe56NvMhm4jg4uERJ8DhreINdAFQzLmMCFSbAcCleKIToBSSxOhJ/GKo/ZlqufCHTSmX54bhrzRgoIUTeaDQvsjmtvEICh2dTpRCmUcU8xuDDSpVP8FFMgHdxkiwSK4ToFaQr8GgqZ8G5PzUz+dykuZ/r8jBCiKxMsc7MpUgOlkJQKM7nOE5hAtupo4gAkxiKJd8RhRC9hCRWXeELmsWEhRA9xo9NMQFaMtSuquxUp6qCMBWECxWaEEJ0mXzNE0L0CipLKQQfFm9BJlEIIfoGabESQvQaxzOKAD6eYT0NRKiklHOYzrgulFHor3RqAs1AG0N2cNFt6eYVfY0kVkKIXmUaVUyjyuswPNdIlP/wBps4gAKmMowLOZ6SLItK9xcumsVsYAlbiJFkMMVcwHFSHkP0GfJVQAghepkEDnfwAps4gEbjolnPPv7AC7hdqDDflz3BGl5kMzGSANTRyr0sYwc5rp0qRIFJYiWEEL3Mm+whRvJQNyCYlpwIcTaw38PIelacJMvYllZyI4l7qOSGEL2ddAUKIUQvc4CWtOQCTIJRSwv08a7SeiKspQaNZhrDGUIxYMpqWFnGkh2gpZAhCpEzSayEEKKXqaKUAHZaXS8fFpV9fE3DV9jK46xBYwaoP8N6zmAKpzKZMopwM612AVRJZX3RR0hXoBBC9DLTGU4RgQ6tNxaKMoqY1IcHcTcS5XHWkMTFwcVFH+rmO0ALfmwWMDFjyY0zmOpR1EIcG0mshBCil/Fh835OZSYj8GHhx2Y2o7iBhVm7yvoC0/2XzkWzhhoAzmQq5zCNUoJYKEZSzrs5hZGUFzZYIXIkXYFCCNELFRPkHcz1OowCOlyv62QmcDITPI5HiNxIi5UQQoiCmM7wjO1tFooZyML2on+QxEoIIURBlFPEW5iBDwsbhYXCh8UipjAUWdxe9A/SFZgPrgP734DIAagYDxWTQPXdcRBCCNFTTmY8UxjGGvagMa1YB8stCNEfSGLVXdFaeOE7kIiAToKyoWICnPxpsP1eRyeEEL3OIMIsZJLXYQjRI6QrsLte/S3EGsBpAzcJTgzqN8HG/3gdmRBCCCEKTBKr7oi3QsNm0J3W7nITsGOxNzEJIYQQwjOSWHWLC9lqyuj05SgGOldrfrY1wsSn6xj8eC1XvNrEpla5TkIIIfoPSay6I1AKJcPTtysfjDy58PH0ch9d3cIX10bYEnWpT2jur4lT/UIDu9skuRJCCNE/SGLVXXNvBl8RWAFz3w5CeChMvczTsHqbvTGXP+6MEWnXa+oCEUdz25Y2z+ISQggh8klmBXZX2Rg4+wew80WI7INBk2HEiWDJpW1vdXOSoAVtnYajxTW8UJ/wJighhBAiz+Svfz4EimHiuV5H0auND9vE3fTttoLpJXb6DiGEEKIPkq5AURATwzanD/YT7PSOC1rwmQlF3gQlhBBC5JkkVqJg/jmvjCuGBwlaEFAwscji3yeWcVypNJwKIYToH+QvmiiYEp/irhNK+b1TQsTRDPIrlCz9IwQALcR4jg1sYC9B/JzMeOYyBpWtpIsQoleSxEoUXMhWhGz5YyHEQVES3M5iIsRx0UAb/+NNamjiQmZ5HZ4Q4hhIV6AQQnjsVbbRRiKVVBkJHF5jB81IORIh+hJJrIQQwmNbqCVJ+rRZHxZ7aPQgIiFEriSxEkIIjw0inHEklYumjFDB4xFC5E4SKyGE8NjJjMdHx3puFoohFDOcco+iEkLkQhIrIYTwWCWlXMk8Sgjix8LGYhyDuRZZc1SIvkZmBfZVTTtgw8PQvAPKxsLki6FstNdRHdVDe2P8eEuU/XHNxcMCfHZiEUMDkt8LMZlhfIpzaCBKEB9hAl6HJITIgSRWfVHdBlj6Q3ASgIaWGtj7Gsz/HAya5HV0WX17Y4TvborQ6pj7G1uj3L07xsrTKxjkl+RKCIViEGGvwxBCdIP8NeuLVt0FThwOTc3W5v6qu72M6ogaEi7f2ng4qQKIaTgQd/nF1qh3gQkhhBB5JIlVX6M1NG3PvK9xa0FDORavNSUJWunzntpc+O/+xBGf25Rwea4uwfoWk5XFHM0LdQleb0qitT7ic/ubN5uTLK5L0JocWK9bCCH6im51BSqlKoDfA7MwzSc3AuuAvwPjga3AVVrr+u6cR7SjFPjCkIyk7/P33i6E4UGLRIYkSAGjQ9nz++9ujPCNjRGCliLuakaFLGpiLpZSuFpTFbR4uLqM6SX9u1d7Z9ThomVNbIw4+JQiqTU/mFbMh8fLAtZCCNGbdLfF6qfAf7XW04E5wBrgC8CTWuspwJOp+yKfJpwDdqeBrVYAJpznTTxdMKPEx4xiG1+nRqsiCz41IXNy8O+9Mb69KUKbC41JTdSFjRGXFgeakpoWBzZHXM5Z2oTTj1uutNZcuKyJ1S0OkdRrjzjwf+taea7uyK19QgghCivnxEopVQ4sAu4A0FrHtdYNwKXAnamH3Qlc1r0QRZopl8KoBWD5wVdk/h1zKky52OvIjug/J5VzUrmPkAWltqLMp/j1rBLmD/JnfPyPNkc7jMnKRAPNSc3Ttf03wVjd4rAp4uB0yh0jDvx0i4xPE0KI3qQ7/ScTgP3AH5VSc4DlwCeAKq31ntRjaoCqTE9WSt0M3AwwduzYboQxAFk2zH4vTL8CIgcgXAmBYq+jOqqqoMWLCyvYFnWoi2uOK7UJZBh3ddD+eFdboTS1XX4sbGp1+NGWCK83Ocwts7lkWIBvbYywotlhaMDiO1PDXDOq91S7ro1rfEoB6a+xJpa+DEo2bY7mjh1t3LsnRqlP8aFxRVw07MhT+pc3JrltS5QtEYezh/j5+PgiKoMyNFMIIbJRuQ7+VUpVA0uAU7XWS5VSPwWagI9prSvaPa5eaz3oSMeqrq7Wy5YtyykO0X/935pWfrY1ytFyppAFG88cxKiQfeQHYhKFM5c00OZCUoMNZGoUu2VSEd+e1juS1eakS9UTdUQ75VBFFtw6JcznJx19bF3c1Zz6UgNvNjtEUscptuHj44r4zvTMr/Nfe9q4bkULbS64QFBBuV/x+mmDGHGEcXFCCNHfKaWWa62rM+3rzqfjTmCn1npp6v4/gHnAXqXUiNSJRwD7unEOMYB9bmIRQwKK9g0kCgi0a+QqtuHj40NdSqoAPrK6hRbHJFWQOakC+N6mKEm3661BPanUZ/HdacWE273EkAUjghYfHNu1lrV798RY03I4qQJodeC2rVF2t6VfBUdrPrCqlUgqqQJTHqMuofnmxtZuvBohhOjfcu4K1FrXKKV2KKWmaa3XAecAb6Zu1wPfS/37YF4iFQNOZdDijdMH8bOtUf63P8GYIouPjA3xRkuSe3bHKfMpPjwuxMVH6c46SGvNKw3JLj3WBZ6vT3LmEO+qX2ut2RRxibuaj40PMbvM5qdb2tgbd7lkWICPjAtR3sXCqg/tjWccr+ZX8FxdkneO7JiYbom4RN30psKkhkePUh4j0+tY2+pgo5hSbKFU9u5fIYTo67o7R/1jwN1KqQCwGbgB0wp2r1LqfcA24KpunkMMYEMCFl+fWszXpx7edubQAB8bf+ylJZRSFNuK5s6jwLMY42F319qWJO9Y3sy2qINSUO6z+NvcUh6oLsvpeMODVuZuT6UY4k9PdMp9imylsjI9PpulDQmuerWZ2oSLBkYGLf45r4zZZf27PIYQYuDq1l8OrfXrWutqrfVsrfVlWut6rXWt1vocrfUUrfVbtNZ1+QpWiO76wNgQRV1411cGFJOKvfnjH3c1ZyxpZG2r6bprdWB3zOXCVxrZ05Zb9+QHxoboPOZcYbpSzx6aPiuzMmhx5mB/h25XUo//dJbyGJ3VxV3OXdrE9jaXVsfMYtwYcTlzaSORLia3QgjR18gIVDGgfHtamIuHBQhZUO6DADC4U/5UZsPSheWexAfwn31xok76HMCkhjt3teV0zJmlPn4/u4QSG8p8ihIbxhZZPHlyOXaWrrm/nlBKdbmPotS1CllmsPs1I4NdOuffdsdIZpgck3A199fEcnodQgjR20l7vBhQApbi3nll7Ig6bGh1mFpsM7rIZkNLkof2xTmuxMf5XRyzdSzq4i6372hjcV2CGSU2HxlXxIRw5gH3NTE3Y0ISc2FH9CiFvY7gmpEhLqsK8kpjkmJbMa/MPuJ4p8EBixcWVrC+xWFXzGF2qY8hgY7fxRoTLnfsaOOp2gSTwuZ1TS0xr2tXzE2byXjwdew5hjIRQgjRl0hiJQakMUU2Y4oOJzZTSnx8uoeWxdkZdTjxhQaaU9XjHz+Q4Dfb2/jfSeWcOji9G+7UQX4ypTslNpzdzcH0RbZiUYZzHsnUEvtQstTe/pjLvBcaqI2bBMqnEvx+Zxv3zyvjvMoAiwb7+fnWKC2dcsGABadlKQorhBB9nXQFCtHDblkXoTauD7XeJLQZN3XjGy0ZF5GeXebj4mEBwu1+O4ssmFZsc2mVd7MUO/vmxgh727VKJbUZR3XjSvO6zhvqZ06Zr8OYtrANZwz2c0qFfKcTQvRPkliJAaE56bIt6pDMUEKgq/a0uezNoQvr0f3xjPWytkYc6hKZ4/nr3FJum1nMiWU2s0psvjo5zHMLKvAdoVJ9V2it2Rl1qI13vyvu33vjZAq/PuGyNWoWyn7i5HK+OTXM8aU2J5Ta/L9pxTx4YpmUXBBC9FvytVH0a22O5gOrWvj7nhg2ELQVP5oe5oYxXZvZBrCyKcm7Xm9mY8SkR7NKbP42t4wpxV0rSlriUxzIkkCFsiRKtlLcPLaIm8d2Pc6jWVyX4D0rmqmJubgaFgzy8bcTynKuol7aeUXtlKSGEtvsC9mKz0wM85mJx14eQwgh+iJpsRL92k1vtHDfnhgxFyIu1Cc0H32zlcf2x7v0/MaEy6IljaxucYi5ZuD1q00Op73UQKyLJQM+PDbUoVsPTPX4C4cFKM6SnOTbtqjDW19pZGvUpc2FuIYX6pKcvbQxY3dkV5w1JPP3ssF+JesJCiEGLPn0E/1WQ8LlvppY2sy0iAPf2hjp0jHu2RMj0Snx0EDU0Ty4r2vJ2acmFHHZ8CAhy5RyKLZhTpmPO44v6dLz8+E329pIdLoOSWBnm8ML9V2rRt/ZssbMMxTrk5qmzicTQogBQroChadqYi6/397G+laH0wb7uHZkKG+tOHtjLn4FmSombc9UByDF0Zp/743z0L44q5uTRDLkD23HUPrAZylun1XCzGKLxw8kmFXq4ytTwgwOHPl7zbKGBHfuihFzNVeNCHLOEH+HsUnHcu02RpyMi1krFDtyLDqa7Xk+BfvjmjKZ+CeEGIAksRKeWdaQ4KyljSS1SVT+tTfGdzZGeeXUirx0JY0vssnWW3dSlllpCVdz/stNvNyYoNXJ3qQbtOCkiq5lDvtiLtUvNFCXMBXIlzYm+fOuGM/ML2deeeY4vrMxwrc3RmhLLYL8190x3lEV5M45JSiljvnaLRrs4/6a9EH0ba6mOksMR7Ogwsc/a+J0Tq98SjGmK+XthRCiH5JPP+GZ96xoocUxiQEcXrrl1g2teTl+wMo+OHxwlpade/bEDiVVQFrSAKYC+bxyH6cP6lpC8uX1rdTE3EPHbHOh2dFcv6I54+N3RB2+uTFCxD18/lbHJE/P1Zluu2zX7qtZrl1lwMr4Whx9bGv/tfeNqWGK7Y4fImEbvjM1TKCbsxeFEKKvksRKeGJ/zGVThj62hIb7a44+dqkp4dJ2lMHjW6IusSzlFZ6sS2Tc/rfdsUMJUHsBBcMCiolFFl+aFOZ/J5V3uWTAA1nKEqxvdajLUPbgv/sTGX8xIw7cvzfGgfixX7uH9iXSlsgBCFvwyP44rdlWXD6C6SU+lp5awTuGBxgZtDip3OavJ5Ty4fH5m8kohBB9jXQFCk8caXhRyM6esCxvTHLjymbWtDgo4KJhAX53fEnaUitgWpayjYIqytKiUpzl3EEL7ptXdsxVy81zFekr/5ktmVp2imzIFJ6diq/zwsjtZbt2JamWpc5pXNSF965o4QbVwvwKH3+cXcrkLpaRAJhR4uO+eWVdfrwQQvR30mIlPFHutzh9sD8tsy+y4OYxoYzP2d3mcNaSBlY2OyS0KRnw8L44576cuWTAyJDNnFIfnXONsA0fHJv5HB8YGyJTXlFkK07tYtdfZ9m6DEeHLEoydEleMiyQsdvOb8F1o4KU+S0WHeO1u3FMiEzlqpzULanhxfokC19qyKn1SgghhCGJlfDMX+aUMrHYojRVgiBswVuG+vnsxMxdSb/d3pY2sy2hTZfay42ZSwbcO6+U0SGLUltRbJvk423DAnxwXOYE5C1DA3xyfBEhy7TylPoUg/yKR04qx86xWvjq5syx7Y25xDN0VZb7Lf45r4xiG0p9Jo6QBbfNKGZ6aj3DP6euXUmna/d/Wa7dKRV+vjolfOh1ZUqyXEwZiftqMs2jFEII0RXSFSg8MyJksWbRIJ6rS7Al4lJd7uP4suxvyTdTRTo7s1BsibicUpG+b1yRzaYzB/HUgQS7Yi6nVPiYcZTFlr81rZgPjg3xVG2CCr/i/KEBgkfonjyaHbHMLUAu0JjQVAbTj31BZYCac4bw6P44cVdzfmWAoe26O4/12gF8flKY60eHePxAnMf2x7lnd5zOKV+LA5sz1ZcQQgjRJZJYCU9ZSnHmkABnDjn6YxdU+HhkX5xI50KXWjOnLPu4IFspzq08tsWLRxfZvGd018caHcnMYosXGtKTlaAFg48wYKrEp7hyRDDr/mO5dgcND1pcNyrEsIDFg3vjNHcKq8SGE46SoAkhhMhOugJFn3HjmBClPkX7dKfIgnOH+o/aCuWlEcHMCVq5z8q5e7G7zh3qZ1KxTfuSVwEFo0M2bxt2bEmoEEKIwySxEn2CqzXlPsXy0yq4ZmSQQT7FyKDi8xOLcp6V5ua4Rt6xeq4+c2mHPTGXhh5Y+qUrr8tSiufml/OhsSEqA4ohfsVNY4K8tLAcn9SgEkKInPXer/lCAM/WJvjYmy280exQ5lN8bFyIP84u6dYf/z/uiPLl9RF2xzSjghbfnmbGHvWUbMOztM7vN5t7drfxhbURtrW5VAUUt04J88Gxoaz1tiKOWdqnPlVka1ubS0tS08WC8kIIITKQFivRa73elOTCZY28kRoI1JTU3LYlykdWt+R8zD/tbOOjb7ayOzWgfFfM5cOrWvjLzra8xJxJttpXo4sUZf78/AreXxPjfStb2JYqxb43rvns2lZ+uS3z60q4mgUvNvDvfXGS2pRbeHRfgvkvNh618KoQQojsJLESvda3N0bovM5xxIU/74pRn2MX2lfWR9IWVY64ZntP2ZiplDtmoeJElsrwx+qWda1pg/ojDnx9QyRjja//7ItzIO7SvmSVAzQmXf4p5RaEECJn0hUoeq03mpMZl2EJWIqtEZdB5V37XtCa1PyjJsauqMPOtswJ2fY2l+9ujDAqZHHFiCDhbpRX6GxzNPM5HQ31Cc2wDOUWjtXWLOeoT2jaXFPNvb11rU5a0gqm3MLaFim3IIQQuZLESvRaJ5T52NAaT6tCHnc1E8JdS6pWNSdZtKSRhKuJOpB5cRnjK+sjFNnw6TWtPDe/nJml+fn1mBK2eLkxPVnxKxic4wLInU0O26zKkBANDaiMxUBnltgU2WQstzArT69bCCEGIukKFL3WlyeHCXVqaQnbcNOYEBVdHJt09WvN1Cc0LY7p6sqWVGnM/hYH6hKad77e3I3IO5rQubkoZUjAytsMvO9NL6ao0yUJ2/DNqeGMg9cvHBZgZMiifV7nUzA0YPH24VJuQQghciWJlei1ZpX6eOqUck6p8OFTMCyg+MrkMD+ZWdyl52+POmzJUkXcr0wikWGpPjSwodVhV1t+usSylVvY1ebSmKdyCxcNC/D3uaVML7bwKRhfZPHr40q4aWzmJW5spXhhgSldEU4t9XPl8ABLFlZkXBhaCCFE10ibv+jVTqnws2RhRdb99QmX/1vTyr174mg0b68K8uOZxQwNWFlbpwAmFFmsO3Mwk5+pY1PnUd+YUgj5UqByWfiUwq8UdiphDBzla5OlTFFQG4VWGl/quQdprfnVtja+tznKgbjLCWU+fjyjmAWDpB6DEEJkIy1Wos9ytOa0lxr5864YzY7p7rtnT4z5LzYQdzXjimzGZeiGK7Lgvam6VecMyZwklPkUozr3Q+bompHBDhXOwYz1OrHcR3meyi38d3+cy19t4o3UeoobIy7vW9nCH3dEMz4+27U7JXXtAG7dEOFz61rZ2ebS5sKShiRvWdrIa1kWvBZCCCGJlejD/rs/wY6oQ6Jdi1BCw96Yy4N74wDcM7eUCp+iOJUjHVwL75MTTBfZ9iyz6Vocnbd6Tl+bEmZqsU1puxiGBhR/nlOal+MDfH5tK51fSsSFW9ZnLrdw8NrFO127falrF3E0P9oSTStNEXXhaxta8xa3EEL0N9IVKPqsN5qTWUsGrGxKcuWIIHPKfGw/exD37omzq83llAof5w71Y6UGdL+RpbSArcwYqEmpjKwm5vLwvjg2cElVgKFH62drp8xv8dppFTyyL85rTQ7ji/Jf0mF9llpZ+2Kan25tY2yRxUWVAYKpc646yrWbU+rL+K1LA683STkGIYTIRhIr0WdNLc5eMmBayeFuvFKfxfvGZF6yZnqxxa4Mta0cDcNT/Xe/2RblU2taD40/+vBq+MPsEq4Z2fVlcGyluKQqyCVVXX7KMRkTstiQYayYiyke6lOKkA3Pzi9nRomPKUe4dlNLbEaGrA7FQ9ubXpKfLlIhhOiPpCtQ9FmXDAsw2G91+HZgKyj1KS4fHuzSMW6dkqFMgQUfGhui2KfY2OrwqTWttLnQ6phbmwvvW9nC3lj+F1DO1aRw9mQn6kKzozkQ11y2vAmtddZrV+JTXDE8SIlPcdOYEJ3LhYUtuHVKuGdehBBC9AOSWIk+y28pXlxYzgXD/PiUSQzeMsTMIizqYjfb6YP93DevjElhCwszaP2zE4v4fzNMSYd798TINNRKYdbn6y2WNBx9QLkGdkZdNkZc/JbipYUVadduabtrd9vMYj49oYgyn8ICJoct/jGvjIUyK1AIIbKSrkDRp40M2TxUXU4yNZMtl4Kbo0IWk8M2dQnNiKDFjBIfdmoMVtzVGRMrBzoM/D6alxsSfHFdK681OYwJWXxtSpi3d7FVrSuSXazpEHfhlBcbKLUV7x0dZHqxzbLGJFqbLr7ydoW9bKWYUWIzKqioQTOl2GZUpjLuQgghDlGZZgwVWnV1tV62bJnXYYgB6I2mJAteaqD92O+wDd+aEuZTE8O81pjktJca0hY4DlmwetEgJh6hC+6glxsSnLWkscMxwjb8dEYx789SwPNYXft6M/fujnEshRBU6nYwrKCCycU2r59Wgc9S/GBThK9t7LhodbENLy+syNtyP0II0RcppZZrrasz7ZOvn2JAu3VDJK2kQMSBWzdEiTmaueU+PjQuRNg2SYiNGWf0lcnhLiVVAF9c15qWmEUc+MK6CE6evtj8aEYxw0PWobISRZbp3jsYYqY0SEOHdRhjGrZFHR7eF6fN0XxjY/q1iTrwtQ2RvMQshBD9kXztFJ7SWvNCfZKtUYcTy33MKCnsW/LlxmTGCu0ump2pcgs/nFHC1SOC3Lsnhq0U14w0ZRy66rUs5QlaHE1dXFMZ7H7ZheFBi3VnDOKHmyIsrk8wt8zH5yaEWNzg8GRtgmdr46xqOfpg+xYHXm1KMjPL/wcXeLkL47mEEGKgksRKeGZfzOWspY1sTxVUcjS8tTLAPXNL8RdovboJIcWutvTtSReGtUt4Tqrwc1JFboO2R4cs6hPpyZUFlPvz8zrbHDPj74W6BJaClxqSPFOX5LGTy3j78CBfWdfKhkiUo01kLLHNotHDgypruYWJnacKCiGEOEQ+IYVn3rOimfWtDi2OaSmJuvDo/ji3bcm8DEtPyNbyNMivKPXl59fj+Cx1n0YEVd4WPP7q+giL6xJEXHMtWx1Y0ZTkw6taAPjA2BBHy+EUELIUV40IUua3uHZkMGMpii9PlnILQgiRjSRWwhNNCZenaxNprSJRF369PUMTUg95ui5zt1Z9UrMvT3WqFtdnPsf2qKYlW7PQMfrDzjY61zmNa/hHTZykqxldZPPkKeXMLLEJKPArOGuwj1PKbfyp+yeX+3hhQQXFqZmBv5pVwg2jQxRZELRgeFBxx+wSzh4ayEvMQgjRH0lXoPDEkXKW6DGs0RdzNLdtifLHnW1o4LpRQT4zMdxhuZiH98b57qYIO9tcThvs5+tTwkxOjfJuzXIuC4jkaa3AqJvlHIrUgsdHb7XSWvPX3TF+vCVKbVxzQaWfr04JMzK1UHRblnM42tx8wMkVflYvGkRd3CVgKfwKfrI1yoFEFK3hwkofT9bGueq1NhqTmrcNC3DrlDA/nlFMU1IzJKAOLQUkhBAiM0mshCcqgxYTwjbrOq1x51dwWVXXWkS01pz/SiMvNyQPLUD8nU1RHt6X4KWF5VhK8ettUT67tvXQ7La/74nx8L44y0+tYHKxzeVVAX6xrS2tJtWwoMW4zv1gOTq1wseD+xJp2ysDisFdXHPwS+si/Gxb9FBZiDt2xvjX3jirTh/EsKDFBZUB7q+J0zlfPbnCd2h9wIMGByy01py1tOO1+8bGtg4zBX+9vY1/1sRZvaiCyqA0bgshRFfIp6XwzJ1zSiixTTcTmNIAVUGLr08t7tLzn61LsLzxcGIAZrmZN1uS/G9/grir+cK6jiUDHG1aqb6RKhnwpclhRoUsilMxBJSp1fTnOaWoPLXONGXp7ou64Hah3EJt3OXHW6Mdam0lNTQlND/fasaj/WhGMUMC6tASNCHLVJG/fVZJxmNmunYOHcsvJDTUJVx+t6NwXbNCCNHXSYuV8MwpFX7WLBrE7dvbWNfqsGiwn/eMDh510Hhz0uWF+iQP1MRpy1DJoMWBlxoSTArbGRMXR8NzdaYFaXDA4o3TB3HXrjaerjPPuXlsiHFF+VtoeEXnlY5TWh1NbRfKLbzRnCRkpXefxjQ8WZvgm8C4Ipt1ZwzijzvaWNqQZHaZj/ePCVGVpaXp5YZk2pisTKIuPHEgwWcnHv2xQgghJLESHhtdZPONaV1roQL4w44oH13dit9SZrmZDI8ptmFMyKYyqEhkaRAa066br9in+MC4Ij4wLj9V0DsbHrSoy1Juocx39FaxkUGbeIYkyAImtCtSOshv8emJXZuxNypkEbJMEnokPmCSlFcQQoguk09M0WesaEry0dWtRF3TvdbmkrG4p08prh4RYJDf4u1VATovbxe24ZZJhSsZ8OXJYToXaS+y4MYxobTxT5lMLbE5sdyXVi4hZMGnJ+SWDL59eJCgpY46bD5gw8fG90zCKYQQ/ZEkVqLP+N32aMaFjy3M2KiQBdOLbZ6dX06Z37y1/zC7lLdXBQlapvhluU9x24xi3jqscCUDrhkZ5BtTwpTYJoaQBdeOCvLjGV1vqXvwxDLeMtRP0DKJYWVA8Zc5JZxYnlujc9hWLF5QzqxSm5BlEr3JYYvqMvvQOUYEFf+cV8b0AlfDF0KIvkw+MUWfcSChyVQBodiG708v5qJhAcZ2GhtVZCv+OreUhkQx++Oa8UVWwaq6t/eO4UHWtCR5ti7JtGKbm8aEjqk46OCAxSMnlXMg7tKQ0EwIW9jdHFw/o8THytMHsTPq4MKha7cv5tKcNOeQ8gpCCHFsJLESfcZlVUEe3henU4UGEtokLtkGagNU+C1yXJGm29a2JDnlxUYiSU0S2BRxebq2kXvmlnJJVfCYjjU0YJHv+pyjOyWjw4IWw44tLCGEECnSFSj6jMuHBzihzEdxuzwgbMOXJoWPmFR57YvrIjSnkiow48IiLnx4dSu6C+UWhBBC9B3SYiX6DL+leOqUcv62O8bf98Qo8yk+ODbEmUN69xIrz9UlMg6y3x93OdCFcgs9ydWa15ocXK2ZV+7L2L24OeKwu83l+FKbcn96AtuQcFnV7DAqZHWYpSiEEAORJFaiTwlYiutHh7h+dMjrULpsaEBRl6XuQ2kXyi30lCX1Cd7xalNqvUJFyIb75pZxxhDTZ1qfcHnH8maWNiQIWIqYq/n8xCJunRJGKYXWmq+uj/DDLVGCqfIX8yv8/OvEUioyJGBCCDEQyKefED3s/yYUpZVbCFnwrhFBQl0ot9ATmhIu57/SxJ6YptmBZkezP665aFkjB1JFs979ejMv1ieIutCYKm/xwy1R7t0TB+CePXFu2xqlLbU/6sILDQmuW9HsyWsSQojeQBIrIXrY+8aE+OT4otQyMyapumhYgF9mWW6mEP5RE8fJML7L1XDP7hgH4i5P1ibSylu0OvDDLWY5oB9sjqRNJIi78PiBBHWZKpoKIcQAIF2BwlP318T43NpW9sZcjiux+e3xpcwu8/Zt2ZrU/H5HlH/VxBkSsPjouBBnd2MqnlKKj44rIuJonjqQYGapzVcmhynKc2vVjqjDbVuivNyQZFapzftGh/jfgQT/OxBnbJHNh8YGeaPZ4d49MfbG3IzLAUVd+MW2KH/e1Ua2cfUHUtnWgUxFxQCfgoakZnDvHvomhBA9QvWGWUnV1dV62bJlXochCux7GyN8cX2kwzYFLF5QxqmDvPmrHHE0J7/QwJaIQyTV6BK24WuTw/xfjtXat0Qcql9ooNXRxFywlVl4+t8nlnFOnmonrGlJMv/FRqKOJqHBxiyo7FccanWyMElPlnyoS3wK3jc6yG+OL+X9K5u5c2fs0GzHgyoDij3nDO52nS0hhOitlFLLtdbVmfZJV6DwhOu6fLlTUgWmFMG7X28pfEApf9rR1iGpAog48NUNEeoTuXVvfWFtKw0JfWgRZUebY970Rkveyi186s1WmpP60NqIDuZatk+iXHJLqg6mRwEFFX7FV6aYBPNrU8KU+xUBdfhxYRt+dVyxJFVCiAFLugKFJ95scTMuoAywLXrkBMbRmnUtDsU+xbii/E7vf3BfvENSdVDQUrxUn+TCHJbCebI2QaZXtKvNpTahGRrIPQk5EHfZ3eZmLelwNCEF48MWCtgSdWnLEOiwgGJMkc3ZQ/x8ekLRoZpho4tsVi0axG1bojxVm2BikcVnJxZxkleVWIUQoheQxEp4Ymgge2PpkSoQ/G9/nPesaCbimOVtZpbY/PPEsrwlWFUBk2R0TlIcrRmSYwJU5oPaROZ94RzHWbU5mhtXtnD/3hh+S3GUXDQr24KfzSwhbCve+kojbZ32W8CFwwL8YXZpxucPD1p8f3rX1zwUQoj+TroChSeGhyxGZSmMefnwzC0eG1sd3vFqE/vimhbHDLR+vdnhrCWNuHnqUvvI+BBFnX4rLKAyYHFyjgseL8zSgjM6ZOWcWH1kdQsP7I3R5kJzMvfX3ubAGYN9LBjkY3AqqWwvZMGHx/admmFCCOE1SayEZ5YsrKCiU/PUrBKbv8zJ3Dry2+1tdB7m5GhTwXxxXech1Lk5pcLPj2cUE7ah3KcosWFi2OKxk8tROY4bWtaUObbdMZe2TKtKH0XE0dy9O5axlUph4g5ZMLXYImhBuS9703TQghcbklhK8fjJ5UwMW5TYUOZThG342XHFVEvXnhBCdJl0BUajcPfd8PDDMGIEfOhDMHu211ENCKOLbOrPG8Lj++O81pTkwsoAs45QamFb1CFTAXMF7Inlr27SB8YVce2oEK80Jij3Wcwts3NOqgD2ZxkxrjGtTcdaJLQpqdNalg4KKpheYjGvzMctk8KEbcVrTUn+3+Yojx1I74+0FeyJmfimFNtsOGMQrzY5NCVdTi73U3yUyvBNCZc/7mzjydokk8IWHx5XxJRi75e1ebo2zh92xGhzNdeMDHJZVQBLBtQLIQqg24mVUsoGlgG7tNYXK6UmAPcAQ4DlwHVa63h3z9MjWlth/nzYssX8bNtw553wu9/Btdd6Hd2AcW5lgHMrjz4o/C1D/fxnf5xIp1HvCQ3zK/L7HaHEpzgrT2sQLhzk4z/70geXD/GrnAauDwsoKvyKmlh6whbXsLTB4fUmh7t2xXh2fgXnDA2wOeLwQn0iraBnQsOCdtdOKcWJXezy3B9zOfGFBmrjLhHXlHa4fUcbD55YxlvyVEYiF7esbeVn26KHXuuj++O8Zaif++eVdStBFkKIrshHV+AngDXt7n8fuE1rPRmoB96Xh3P0jN/8BjZtMkkVgOOYFqwPfQjaOg/jFV5796gQo0Ome+ugYhveMyrI+F68+O/3phVTbJvWoYPCFvx8ZnFOf+gtpfjZjGLCGX57D7bbxVxoduADq0zpinePCjEqz9fuWxsj1MTcQ7MoE6kyEjeszF8ZiWO1JeJw29ZohwSy1YEnDyR4MtsMAiGEyKNuJVZKqdHARcDvU/cVcDbwj9RD7gQu68458iIahe3bId6p4ewf/zD7OlMKli8vTGyiy8K24uWFFXxuQhHTi21OKrf55XEl/MbDpWG64rhSH8tPHcS7RgSZEra4YKif/51czjtG5D4o/MqRIR49uZzzh/qZHLayzqRc3pgk5miKeuDaPbg3nrFrti7usjXXaYrd9PiBRMYPtRYH/r23dzac90euA407ICbLRooBqLv9Jz8BPgccHG08BGjQWh8crbsTGJXpiUqpm4GbAcaOHdvNMLJwHPj85+FXvzLJkm3DV78Kn/mMuV9Rkf15ZWU9E5PolnK/xTemFfONaX1riv/UEps/n5B5UH6uFg32s+jkcgAqH6/lQIYsx2+BL5Vp5PvalWbJ5hygxKPFpUt9ikyn9qeKm4qet/peeOSjEG8B7cKMd8Alv4NA3/qVFSJnObdYKaUuBvZprXNq2tFa3661rtZaV1dWVuYaxpHdeiv8+temVSoSgeZms+3OO83+j34Uijv9tisFo0bBrFk9E5MQPeDmsellIoIKrhoe7LEq6B8bH6JzL6JPmfFulUFvJhxfMiwAGYb2+xS8Z5SUjehp25+HB26AyH5IRsGJwZr74f7rvI5MiMLpzqffqcDblFJbMYPVzwZ+ClQopQ62hI0GdnUrwlw5Dvz0pyahai8SgW9/2/x80UXwqU9BKGRaqEpLYcwY+M9/TIIlRB9x65Qw5w71U2SZgqRhG06u8PHLWT3XTPD+MSGuGREkZEGpz4zZml5sc89c71p7S3yKh08qo8KnKDtYNsKC248vYXIvmK3Y3z3/XUh2+sh12mDDo9Cy15uYhCi0vCzCrJQ6E/hsalbgfcA/tdb3KKV+A6zUWv/qSM/vkUWYW1pg0CBIZqghVFxs9h9UUwMvvQRDh8Kpp4Il5b1E37SuJcmqZocpxTazj1C6Ip+2RR2WNyYZHbI4qdzXK2bexRzNM3UJ4q7mzCF+Sn3yO10Iv5wJB9akbw+WwfXPwIi5BQ9JiB5xpEWYe+KT9/PAPUqpbwGvAXf0wDmOrrgYhg+HnTvT951wQsf7w4fD299ekLCE6EnTSnxMKylsebpxRXbe12zsrqCtOL8LJTxEfo09HWo3gO70fdZNwpCp3sQkRKHl5Wuc1voZrfXFqZ83a61P1lpP1lpfqbWO5eMcx0wp+MlPIBzuuD0chh/8wJOQhBCiPzv9i2aQumr3l8VfDKfdIoPXxcDRv9vHL78cHnwQTjsNqqrg/PPh2WdhwQKvIxNCiH6nYjzcvAyOuxpKhkPVHHjb72HRl7yOTIjCycsYq+7qkTFWQgghhBA94EhjrPp3i5UQQgghRAFJYiWEEEIIkSeFnT4kxJ49cPfdcOAAvOUtcM45UjNM9Lg9bS53727jQFzzlqF+zhni7xVlIYQQ/Y8kVqJwHnvMlLVwHIjF4Je/NBMLHnoIfPJWFD3j8f1xLnu1CUebxal/sS3KaYP8PFxdhs+S5EoIkV/SFSgKI5GAd77TVL6PpSpwtLTA4sWmBUuIHpBwNVe/1kzEMUkVQKsDz9cnuGu3N5VghBD9myRW+XSsMyy1Pvbn9EVaw9KlpqWqs9ZW+NOfCh6S6H16YobyK41JkqQft9WBO3e2FSQGIcTAIolVd2kNP/oRVFaapXCmTTNrDR7J2rVw1lmm+6u4GG66qeMSO/1FXR28+91mLcYzzjBJVCZ+f2HjEr1G0tV8eV0r5Y/VYj9aywmL63m+LpG349sK0Jm7+3ztxljdu7uNCU/XYT1ay4gna/nNtqgkWUKInEhi1V3f/CZ89atmMDbA+vVw1VXw9NOZH79vnylQ+uyz4LoQjcJf/gIXXli4mAvBdU0ydd99EI+b+5larIqL4f3vL3x8olf40OoWbtsSpSmp0cCKZofzX2nkjaYMa3zmoLrcRzjDajvFtllEGuCBmhg3rGxha9T0FdbENJ9Z28qvtqW3aAkhxNFIYtUd8bhZHifSaTn3SAS+8pXMz7n9dmhr69gFGIvB8uXw2ms9F2uhPf00bN1qrlFnwaC5hcPwjnfAlVcWPDzhvdq4y127YkTcjtvbHPjOpkjmJx0jWykerC6jzKcosSFoQdiCd1QFuXKEWUvwlnWRtBgiDnxtQ0RarYQQx0ymYnXHgQOZW2EA1q3LvP31101i1Zltmy7Cuf1k+fd16yCZpdXhtNPg4ovh7LNh9uzCxiV6jS0Rh4AFbZ2SGhd4vj7J9zZFmF3q4/xKP3Y3SiOcUuFn19mDuX9vjNq45qwhfuaUHf7o2xLN/Dtcn9C0udDL1pcWQvRyklh1R2Vl9jIBM2Zk3n7iiWYMVufkynFg5sz8xuelmTMzX5viYrj6ajOuTAxoE8M2cTfzvpqYy1fWRQjZML7I5vkF5ZT7c29gL/EprhsVyrhvUthmdUt6cjU4oAhJm74Q4hjJx0Z3+P3wxS+aZKG9cBi+9a3Mz7npJrO//TfwUAhOOQXmzOm5WAvtjDNg8mQIBA5vs20oKYFrrvEuLtFrDA5Y3DA6SDjDp1BSQxJocWB9q8MX1mWZ+JAH35tWTFGnGMI2fGtqWIqICiGOmSRW3fWFL8D3vw8jRpjEYdYseOABWLQo8+OHDoUlS+CCC0xiVlpqBm8//HBBw+5xSsEzz8B115lEMhCASy6BV14xyZUQwM+PK+ELk8IM8ausH0ZxDffszjBWL08urgpwz9xSpoYtbGBsyOKXx5Vw89iiHjunEKL/Ur1hcGZ1dbVetmyZ12EIITwUczTFj9XiZPhIKvcpGs4bUvighBAiA6XUcq11daZ90mIlhOgVgrbijMH+tA8lv4KrRgQyPkcIIXobSayEEL3GHceXUBkwpREASm0YX2TxvWnFR36iEEL0EjIrsK/S2oxhWrvWzMBbtKjjgHgh+qDxYZstZw3mHzUxNrQ6zCn18baqAH5ZLLnXcB3Y9Bg0bIWRJ8LIk+SjR4j2JLHqixoazKy7zZtNmQbbhilTTFHO8nKvoxOiW4rs7KURhLeadsIfTodoLbhJUBaMPgXe9Qj4gl5HJ0TvIF2BfdHHP25aqlpazJI4LS2wejV8+tNeRyaE6Mfuvw6adkC8GZJRSLTCjhfhhe97HZkQvYckVn2N1nDvvelLxcTj8Le/eROTEKLfa2uE7S+C7lRLNdkGr/7em5iE6I0kseqLsi0V09Zm6mTNnm2SLyGEyBP3COtiOz1XZkyIPkcSq75GKTjvPLAy/K/TGmpr4Y034IYb4Cc/KXh4Qoj+KTwEhk5L3275Yaasoy7EIZJY9UW/+pVpmTq4lI6dYZXYSAS++tX0LkMhhMjR2/8CwXLwpYrS+0ugfCyc9XVv4xKiN5FZgX3R+PGwcSPcdResXAn33GNmCnbmurBzJ0ycWOgIhRD90PA58PFNsOLPULsexiyE464En0ziFOIQSaz6qtJS+NCHzM+rVsHzz6c/xnGgsrKwcQkh+rXwEFjwKa+jEKL3kq7A/uArXzELHbdXVATveY9JwIQQQghREJJY9QfnnQe//a1pnQqFTFJ1ww3w8597HZkQQggxoEhiVQhbt8KNN8KECbBgATz4YP7P8e53Q02NOVddHfzylxCQhWtF7+JqzW+3RZmzuJ7Jz9Tx+bWtNCRcr8MSQoi8UVprr2OgurpaL1u2zOswesb27TBnDjQ3mzFPYGbzffOb8CkZqCAGlve83sw/98aIpH4VggpGF1msPH0QYVsWnBNC9A1KqeVa6+pM+6TFqqd997tmyRmnXbni1lYzLioa9S4uIQpsQ6vDfTWHkyqAmIaamMtfd8e8C0wIIfJIEque9swzmSulWxasW1fwcDynNbz8Mvz3v1Bf73U0ooBebkjgy9Ao1erAkwek3poQvUUyBpufhC1Pg5PwOpq+R8ot9LSxY82CyZ3F4zB8eOHj8dLmzXD++WYsmG1DLAbf+Ab83/95HZkogJEhi0ydfQEFE8MZitwKIQpuw6Pwz3eanzVg2XD1v2D8mV5G1bdIi1VP+/zn00shBINmJt9ASqy0hgsvNMlVSws0Npq1Db/2NXjqKa+jEwVwxmA/lUGLzkOp/BbcPFYqTArhtZYauO8KiDWZW7wJ2urhrxdDW4PX0fUdklj1tLPPNjP0KiqgpMQkVRdeCHff7XVkhbVypakC73aaARaJSFmIAcJSimdOKeekch9BC8I2jA5ZPFRdxrgiabESwmtv/C39I/qgN/9Z2Fj6MukKLIT3vheuvda01gwdCkOGeB1R4dXXZ17TEGD//sLGIjwzpsjmpYUV7G5ziDowMWyhlMwGBGhrhKU/hTX3Q9EgOOUTMP1Sr6MSA0lbPTgZ5pG4CbNPdI0kVoXi98O0DEvDDxQnnZR5EH9REVx+eeHjEZ4aGZIWqvbiLXD7idC0C5w2s23XyzD/U3D2N72NTQwck86Dl34MidaO2y2f2Se6RroCRWEUF8Ntt5nxZgdbKIqKzILSN93kaWhCeO3VO6Blz+GkCswft5d+CK3SoCsKZMypMPkC8Bcf3uYvhuOuhqrZ3sXV10iLlcivZBJefdWMJZs9+3ASBXDzzaZY6i9+YWYGvu1tpiJ9cXH24wnRj7TshbqNMHgylFQd3r7hP5CIpD/eDsCupTD14sLFKAYupeDKe814qhV3mpaqE94L06RL+phIYiXy59FHzdI6iYSZBTh0KPz733D88Ycfc8op5ibEAOIk4KH3w6q/gy8EyTaY9U645Hdg+6FsDCgLdKeBw9qF4qrMxxSiJygLjrvS3ERupCtQ5Mf27XDFFWadwuZmU1Jh61YzKzIuxR/FwPbMrbD6PjMwONZo/l19Hzz7dbP/5I+ahKs9ZUPpaBiZcdEMIURvJYmVyI8//jHz4PRYDB55pPDxCNGLvPIrSHZawSoZgVd+aX4eMde0XgXLIFAKviKoOh6ue6xjb7oQoveTrkCRH7t3Z26ZchwppyAGNK0h3px5X6zd9uPfBTOvgL0rIVgOQ6YUJj4hRH5Ji5XIj/PPNwVQO9Mazjij8PEI0UsoBSNOzLyvczefHTDbJKkSou+SxErkx9veBrNmdVy+p7jYFEadOtW7uIToBS78hZm2rlLlu5Rt7r9VFh0Qot+RrkCRHz4fPP00/P73cNddpkbVBz4AV1/tdWRCeG7UyXDzcnjh+1DzOgyfC6d9HoYM0O8cWkPDFjPrcdAkGUcm+heltfY6Bqqrq/WyZcu8DkMIIUQP27cK7r0CGrebhKq4Cq68D0Zm6S4VojdSSi3XWmecsytdgUIIIQoiEYE/nQG168wsyUTEtFzdeTa0NXgdnRD5IYmVEEKIgljzL3AyTB7WSVh1T+HjEaInyBgrIYQQBdG8x1Sd7ywRMQtQH1S3EV75NdRvhglnm2VVgqUFC1OIbpHESgghREGMWQB2ENxOtYQDJTD2VPPz5ifgnkvNMkBuAjY/Bi/9CG5eBuGhhY9ZiGMlXYFCCCEKYsyp5uZvV5XFVwTDZsOk88wswQeuNy1YbsLsT0SgZQ8s/q43MQtxrCSxEkIMSIkoNO1Mbz0RPUcpeNdDcPZ3YNgsqJwJZ34drn/SLP7bsDXzIHYnDmv/VehohciNdAUKIQYUJwH/+zS8doe57wvC2d+Fkz7obVwDhR2A+Z8wt878xeA6mZ8XKOvZuITIF2mxEkIMKI9/Fl77g5nun4yaFpLHP2NmrAlvlVSZYqoHK9Qf5A/DyR/1JiYhjpUkVkKIASPZBst/B8lIx+2JCDz7DW9iEh1d8XdTkT5QAoFS8IVg1jUw731eRyZE10hXoBBiwIjWA1kWm2jaWdBQRBalI+DDq2HnEmjeZRalrhjvdVRCdJ0kVkKIAaN4mBnHk6mW0siTCh+PyEwpU5pBiL5IugKFEAOGZcO5P+g43R9l7p/zHc/CEkL0I5JYCSEGlLk3mHE8I040BScnXQA3vgAj5hY+Fq0h3pJ9JpwQou/JObFSSo1RSj2tlHpTKbVaKfWJ1PbBSqnHlVIbUv8Oyl+4QgjRPdqFXS9D7XozI3Dv63BgTeHjWHM//GQ8fH8QfK8cHv+c1NQSoj/oTotVEviM1nomMB/4iFJqJvAF4Emt9RTgydR9IYToFZ76slkiJd5sEpmWPfDv98OGRwsXw9Zn4P53Q9N2E0OiFV7+Jfz3U4WLQQjRM3JOrLTWe7TWr6Z+bgbWAKOAS4E7Uw+7E7ismzEKIUReJGOw9GemvEJ7iQg889XCxfHsN9JjSEbgtd+brkEhRN+VlzFWSqnxwFxgKVCltd6T2lUDVGV5zs1KqWVKqWX79+/PRxhCCHFE0TrQWcYz1W8pXBx1GzJvt3zQUlO4OIQQ+dftxEopVQL8E/ik1rqp/T6ttSZL1Rit9e1a62qtdXVlZWV3wxBCiKMqrgQ7lHlf1ezCxTF8HqAy7ysbXbg4hBD5163ESinlxyRVd2utDy4IsVcpNSK1fwSwr3shCiFEflg+OPsbncotUPhyC2d9HfxF6TGc9kVTaVwI0Xd1Z1agAu4A1mitf9xu17+B61M/Xw88mHt4QgiRXyd/DC7+LQyeAv4SGL0A3v0YjJ5fuBiGnwDXPwPjzjAxDJoEF/zUJFZCiNzpLCsrFJLSOUahlDoNWAy8AbipzbdgxlndC4wFtgFXaa3rjnSs6upqvWzZspziEEIIIcTAtv0FePRjUPM6hMrh5I/DGV81RYF7glJquda6OtO+nJe00Vo/T9ZRApyT63GFEEIIIbpq7xtw13mHZ9q2NcBLP4TWvXDxbwofj1ReF0IIIUSftfjb6et/JiLw+p/MTOBCk0WYRXbxODz0EGzaBLNnw3nngSW5uOj7kjFY9yA0bIUR82DCOWbhX9E7JKKw9n5o2gWjT4Gxp8v/H5Hd3pVmRYXOfEFTRqVocGHjkcRKZLZzJyxcCA0NEI1CKAQTJ8LixVBW5nV0QuSsfjPcsdBUO0+2mVl4lcfB9U+lzxYUhbd/Dfxpkfl/k2wDOwijToJr/2v+UArRWdUcqF2Xnlw5cRg0ofDxSPODyOz974fdu6G5GZJJaGmBtWvhllu8jkyIbrn/OojsTy1+nDT/1qyA577tdWQC4B9XQ6T28P+fRCvsXApLf+p1ZKK3WvSl9DIl/jCccEPhW6tAEiuRSSwGTz4JTqcS1fE4/PWv3sQkRB5E62HXKxm+2bbBijszP0cUTtPOVFX6TpPVk1F47Q+ehCT6gGGz4LonYEQ1KMskU6d+Ad76c2/ika5AkU7r7MVA3Awd2UL0FTr7WJ1MYzREYWmXrHPN5f8PtDXCk1+EVX8zH9EzLodz/x+Eh3gdmffGLICbX/E6CkNarES6UAgWLUofqO73w5VXehOTEHlQNBjCwzLvG39GYWMR6crGQPnY9O2+EMy+rvDx9CbahT+eDq/dYcoJxBph5V/g9/PBSXgdnWhPEiuR2R13wNChUFJi7peWwrhx8L3veRuXEN3gJs0fpEyadhU2FpFOKbjiHgiWH55IECiBYcfDws94G5vXNj0GDVvMgOyD3ISp1bT2Ac/CEhlIV2Au2trgkUegthbOOgsmT/Y6ovybMAG2bIH77oMNG2DOHLjsMtNqJUQf1brfJFeZ7H+zsLF0Res+2PAIKBumXgxFg7yOKJ3WsHOJmfI+ZAqMP9OMc8nV8BPgk9tg1T1mzNXo+TD5gp6roN1X7F2ZXqsJIN4Me1fAcdKZ0GtIYnWsXnsNzjnHzJRzHDPm6MYb4Re/6H+FVsJhuP76oz9OiD4iPCT7H/1Bkwoby9G8+nuzRIeV+pR++ANw2Z296w9ovNVUvK5ZgRm/ZpnuvBueg/DQ3I8bKofqD+QtzH5h8GTwFZlEqr1AiVn3UvQe0hV4LFwXLr4Y6utNGYJIxLRe3XknPPCA19EJIY7CDsD8T6bXq/KH4ayvexJSRvWb4dGPmxaKeIu5JaPwwPXQstfr6A576kuwe7kpiZCImDjrNsJDkhTl3dRLTIulatdypyzz3u1NybaQxOrYLFsGTU3p21tb4fbbCx+PEOKYnfUNWPg5CJaZ1qCy0XDpH013U2+x6u+ZuyyVgjX/Knw82az4MzixjtvcBKx/SAZU55vthxtfhEnnmfetsk236/uWSGHb3ka6Ao8mFoPvf98M5m5tNbWcMolGCxvX00/DV74C69bB9Onw7W+bmXy50hr+/Gf4f/8P9u+HM86A73wHpkgbs+hflAVn3gpnfCVVeb2o9/XiOzHQTvp210lPZI5F/RbTyrTlSQgNggWfhnk35f763SzJk3alPEJPKBsF1z5iBrBrLZXoeytpsToSreGii+C734Xt281g9UyJVTgM73534eJ69FHTJfnCC3DgADz/PFxwATz2WO7H/NrX4MMfhjffNInVv/4F1dWwdWu+ohaiVznYjdLbkiqAaW9LryQNJtapF+d2zObdcPuJsPrvZlB87Tr436fgsc/mHufUS0B1/nquYMxC+aPfk+yAXN/eTBKrI3n5ZViyxIyj6sxOdXSXlJgE5D3vKVxcn/qUGd/VXjQKn8lxPnJTk2mpan9M1zX3pbyCEAU3Yh7Muxn8xZiCmakk8NQvmEHMuXjpNjMWqn1LUiICy34FkQO5HfO8H0JJVSpOwBeGUAVc8rvcjidEfyBdgUeybFn6si4HTZoEY8fCtdfCddcdTrR6mtawfn3mfW/mOF98/XoIBNITyGTStIYJIQqiZS9se87MijvvBzD1IljyU9O6dtrnYMypuR9723MdayAdZAdh3+rcCqSWjoSProM37jaD2IcdZwp59sayEEIUiiRWRzJ+vKnblKnFats22LPHJB4bN8K3vlWYmJQyhTv370/fNyxLSemjGTXKjCXLdK7+WKNLiF5o8XfguW+CdbBUnAI3DlbANFptfQquuBemvDW34w+ZCnuWZVgnMZa52nlXBYrhxJvhxNwPIUS/Il2BR3L++TB4cObWqFjMlFxoa4Of/MSMeyqUL37RjOtqr7gYbrklt+ONGAEXXmiWsmmvqAi+8IXcjimE6LKtz8Lib6fKKzSnbk2p+00QazKlDO67AiK1uZ1j4WfSx23ZQRi7CAZN6P5rEEIYklgdic8HixfDwoWm5crnS18/D8xswV/9qnBxffKT8PnPm/FdRUVmuZlbboGPfjT3Y951l1kHMBg0CdaIEWbb/Pl5C1sIkdmy35jxTl2Ra7mF4SfAlf8w5SV8IZNUTb8UrvpHbscTQmSmtNZex0B1dbVetmyZ12EcWUMDPPusGaSeqZbVokVmfyHF42ZW4NChZoxUPrS2mtdXVZU5iRSij9Ea3rwPXvqRGaQ9+UJY9CUoGe51ZIfdfSFs7EKjtx2Ec74LCz6V+7m0NuvLBUrMTQhx7JRSy7XW1Zn2yV/OrqqogPPOyzyYPRyGq64qeEgEAjByZP6SKjBdiiNGSFIl+o2nvwoP3gi7XjYVzZf/Fn4zJ/eZcD3huKsOz6w7EmV1v5CpUiaplKRKiJ4hfz2PRVER/Pa3JpE6OO6quNgU6LzxRm9jE0KkidbBiz80ZQYOchPQ1mhm2/UWx78Lhs9pl1xZprK23a5Wkb8YTvwAVM7wJEQhRBfJrMBjde21MGeOSbBqauCSS+Dqq83YJCHEMdMa9q4wpQZGVpuFkvNl70pTSNHpNLHXiZnq43wzf+fqDjsA1z8Db/4D1t4PRUNMRfTWvaaUgWXDnOth/FleRyqEOBpJrHIxaxb8/OdeRyFEn9e8G+463yy1YvnMLLhTP5+/BZFLRmSu3YSC8nH5OUe+2H44/hpzay/X8gpCCG9IV6AQwjP3XAb715iuulijaUl66Uew9sH8HH/oNBg+t11tqBR/kSk/IIQQ+SaJlRDCE/VbYN+q9MWGE62w5Cf5O881/4bxZ5rxSv4S08126Z9Mt6MQQuSbdAUKITzRVm+6v5LR9H1HmrEXrTOJ1/qHobjKlB6YdF72x4eHwHWPmTFcbfVmrT2rF37yxZpg6c9gzf1mSZhTPgHTLvE6KiHEseqFHy9CiIFg2CzMWi2d2EGY8fbMz4nWw29OgNZ9ptsQYPtzcNY3YcGnj3y+kipz643iLXB7NTTtMOPMAHYugYWfhTO/5mloQohjJF2BQghP2AG46FfgKzL1mcD8XDIc5mcpgPnyzyGy/3BSBaZi+VNfhlhzz8fcU177AzTvOpxUgekSfeH7vavelhDi6CSxEkJ45vh3wQ2LYdrbYPg8OP0W+OAK0xWWyYZHOiYfB9kBqHmtZ2PtSesfzrykjR0wLVdCiL5DugKFEJ6JHID/fhL2LDfjrZ7/rqkIPv+TmR9fOjLzdjcBxcN6KsqeVzbatNppt+N27ZpxZEKIvkNarIQQnrn3cti11AxgjzWluvW+BBv/l/nx8z8F/nDHbcoHQ2fA0Ok9H29POfljHausg6m8XjpKZi8K0ddIYiWE8ETjdrN+n5vouD0RgZd+mPk5406H828zrVrBMjMma8RceNfDPR9vTxoxF972OwiUmtflD8Ow48xsRpVhgL8QoveSrkAhhCda95sxRJnGTDXvyf68E2+G2deZ5WrCQ0z5hP7g+GthxhVmeZ9guSluKnovNwlv/NUsOeQrgnnvhykXSSIsJLESQnhk2HHpY4rAJFtTLjzyc/1FMPqUnonLS74gjDrZ6yjE0WgX7nor7Hzp8ALfm58wydUFP/E0NNELSFegEMITvhCc96OOY6bsABQNNvWbhOitNjwKu5YcTqrA/Lz8dqjb5F1coneQFishhGdOvBmGTIUXf2jqOE06HxZ8BoorOz4uEYWGLWZR5WylGIQolA2PmKKunSkFW56EwZMKH5PoPSSxEkJ4avyZ5paJ1qZI5nPfMuUInDjMeidc/FvTbSaEF8JDTeuqE++4XdkQksR/wJOuQCFEr7XyLnjum6abJd5sKq6vvtfUvhLCKydcb5KozpQNUy8ufDyid5HESgjRaz3/3fSK5MkorPhT5tmEQhTCoInw9r8cLvsRKDUFaq97zEysEAPbwOsKbGiAP/wBnn8eZsyAD34Qxow5vN914aGH4J57IByGG2+EU0/1LFwhBrLWvZm3a20KivpChY1HiINmXm5mr+540XRLj14AVoZWLDHwDKzEavduOPFEaGqCSAT+8x/42c/giSfglFNMUvWOd8CTT0JLixmJeM898LnPwa23eh29EAPO6AVmoDC64/aiQWacixBe8hfBxHO8jkL0NgOrK/CWW+DAAZNUAcTjJoG68UZz//HHTZLVkpruobV57Pe+Bzt2eBOzEAPYOd+FQLEZuH6QPwwX/KzjNiGE6C0G1kfTf/4DyWT69o0boa4OHnwQWlvT99s2PPZYz8dXVwe1tT1/HiH6iKrj4aZXYOaVUD4Wxp8F73oEjrsy/bGt+6Gtoedi0Rpa90FbY8+dQwjR9w2sxCoczrxdawgGoawMfBl6Ry0LSkt7Lq6NG2H+fBgxAkaOhOpqWLu2584nRB+y9VnY9D+TOO1cAmsfMMuJHLTnNfjVcXDbaPjBMPjTmdC0M78x7HgJfjEdbhsLPxwGfznfJFlCCNHZwEqsPvhBKOo0ZcPvhwsugOJieO97zf1MLrqoZ2JqazOD4195xXRNxuPw6qtw2mmHuySFGKDe/Cc89mnTEpWMmtvy2+GJz5v9rftNIrX/TVNTyE3A9ufhj6eD6+QnhsYdcNd5ULfelHtw4rD1abjzbPOdTAgh2htYidVnPwsXXgihkGmBKi6GWbPgj380+6dPh1/8wiRfpaWmBau8HB5+2Dy2JzzwgBnH5bZbNE1rk3Dde2/PnFOIPuK5b2QotxCBZb8xCc6KO00y1Z52IFILmx/PTwzLf5teCNJNQOM2MyNMCCHaG1izAv1++Mc/YN06WLECxo+Hk07quBz5jTeamYFPPWUSsHPOMd2EPWXrVpNEddbaavblynXh0UfNuLLBg01r3OTJR37Ozp0mydy5E849Fy69NHsLnhAF0Jhlzoh2TStW3QbTitWZm4SGbfmJoXZ9emIFgDLJFVKNRQjRzsBKrA6aNs3csqmoMMlVIVRXmwSuc7dfSYlJ+nKRTJquyxdeMAma3w8//jH86U9w1VWZn/Pkk/C2t4HjQCwGf/2ruUaLF6d3nwpRICNPhM1PpG8PlJhyC2NOhZV3d1wMF8x3pZHV+Ylh7Omw4T/pLWduEkacmJ9zCCH6j4HVFdgbnX02zJxpkquDgkGYNMl0W+bi738/nFQBJBIQjZrWuEgk/fGOA9dcY/bFYmZbSwu8+Sb88pe5xSBEHpzzXVNeoT1/GN7yA1Nu4biroGS4WbftIF8RjD3NJGX5cMJ7oWgwWO0ab31hmHoRDD3C9zMhxMAkiVVXxeOHk458six4+mn4zGdg9GgYNQo+8QnTUmTnWMb37ruzl41YvDh9+6pVJvHqLBo1xxLCIyOr4b3PwaTzIVxpWoguvwfmvtfs94XgppfhxA9AyQgoHw+n3wLXPJS/GIKlcNMymHsjFA83y5mc9TW4/G/5O4cQov9QuhdMa6murtbLli3zOozM9u2D97/fjFfSGhYsgDvugKlTvY4su8svh3/9K317aalZrueMMzpuX7vWVKTP1Jq1YAG8KCN0hRBCiIOUUsu11hkHHEiL1ZG4Lpx+Ovz3v2bckuOYLrYFC6CxF1cJvOmmzLMYg8HM6x5Om2ZaytoP4gdzjA9+sGdiFEIIIfohSayO5IknYM8eM0bpoIOlEO66y7u4jub88+FDHzLjtsJh01JVXm5mCGYqgKqUqTpfWWkeGw6bAevveAe8+92Fj18IIYToowbmrMCu2rAh8xI4kYgZ2N1bKQU/+AF8+MNmtl9FhZkleKTZfTNmmPUQ//tfqKkxLXUzZhQsZCGEEKI/kMTqSObMyTyAvDulEAppwgQzPqyrAgFTckEIIYQQOZGuwCM59VRTmb19gVCfDwYNgquv9i4uIYQQQvRKklgdiVJmnNUHP2iql5eVmXpPr7wiRTOFEEIIkUbKLQghBhTXhfuuhLUPAK4pLrroK7Doy15HJoToK45UbkHGWAkhBpS73wqbHzt834nD018xy+TM/6RnYQkh+gnpChRCDBjxSMekqr2nv1rYWIQQ/ZMkVkKIAaN2ffZ98Zbs+4QQoqt6JLFSSl2glFqnlNqolPpCT5xDCCGO1ZAjrEQVKClcHEKI/ivviZVSygZ+CbwVmAlco5Same/zCCHEsQqEYeK5mfed+bWChiKE6Kd6osXqZGCj1nqz1joO3ANc2gPnEUKIY3btf2Ha2zn06WcF4Myvw4JPexqWEKKf6IlZgaOAHe3u7wRO6fwgpdTNwM0AY8eO7YEwhBAinWXBO/9lfnZdc18IIfLFs48UrfXtWutqrXV1ZWWlV2EIIQYwSaqEEPnWEx8ru4Ax7e6PTm0TQgghhOjXeiKxegWYopSaoJQKAO8E/t0D5xFCCCGE6FXyPsZKa51USn0U+B9gA3/QWq/O93mEEEIIIXqbHlnSRmv9CPBITxxbCCGEEKK3kqGbQgghhBB5IomVEEIIIUSeSGIlhBBCCJEnklgJIYQQQuSJJFZCCCGEEHkiiZUQQgghRJ5IYiWEEEIIkSeSWAkhhBBC5InSWnsdA0qp/cA2r+PIwVDggNdB9BNyLfNLrmf+yLXMH7mW+SPXMn9yuZbjtNaVmXb0isSqr1JKLdNaV3sdR38g1zK/5Hrmj1zL/JFrmT9yLfMn39dSugKFEEIIIfJEEishhBBCiDyRxKp7bvc6gH5ErmV+yfXMH7mW+SPXMn/kWuZPXq+ljLESQgghhMgTabESQgghhMgTSayEEEIIIfJEEqsuUkqNUUo9rZR6Uym1Win1idT2wUqpx5VSG1L/DvI61r5CKWUrpV5TSj2cuj9BKbVUKbVRKfV3pVTA6xj7AqVUhVLqH0qptUqpNUqpBfK+zI1S6lOp3+9VSqm/KaVC8r7sOqXUH5RS+5RSq9pty/heVMbPUtd1pVJqnneR9z5ZruUPUr/nK5VS9yulKtrt+2LqWq5TSp3vSdC9VKZr2W7fZ5RSWik1NHW/2+9LSay6Lgl8Rms9E5gPfEQpNRP4AvCk1noK8GTqvuiaTwBr2t3/PnCb1noyUA+8z5Oo+p6fAv/VWk8H5mCuqbwvj5FSahTwcaBaaz0LsIF3Iu/LY/En4IJO27K9F98KTEndbgZ+XaAY+4o/kX4tHwdmaa1nA+uBLwKk/ha9Ezgu9ZxfKaXswoXa6/2J9GuJUmoMcB6wvd3mbr8vJbHqIq31Hq31q6mfmzF/vEYBlwJ3ph52J3CZJwH2MUqp0cBFwO9T9xVwNvCP1EPkWnaBUqocWATcAaC1jmutG5D3Za58QJFSygeEgT3I+7LLtNbPAXWdNmd7L14K/FkbS4AKpdSIggTaB2S6llrrx7TWydTdJcDo1M+XAvdorWNa6y3ARuDkggXby2V5XwLcBnwOaD+Lr9vvS0mscqCUGg/MBZYCVVrrPaldNUCVV3H1MT/BvKHd1P0hQEO7D42dmMRVHNkEYD/wx1S36u+VUsXI+/KYaa13AT/EfHvdAzQCy5H3ZXdley+OAna0e5xc22NzI/Bo6me5lsdIKXUpsEtrvaLTrm5fS0msjpFSqgT4J/BJrXVT+33a1K6Q+hVHoZS6GNintV7udSz9gA+YB/xaaz0XaKVTt5+8L7smNfbnUkyyOhIoJkP3gcidvBfzQyn1JczwlLu9jqUvUkqFgVuAr/bE8SWxOgZKKT8mqbpba/2v1Oa9B5sJU//u8yq+PuRU4G1Kqa3APZiulp9imlx9qceMBnZ5E16fshPYqbVemrr/D0yiJe/LY/cWYIvWer/WOgH8C/Nelfdl92R7L+4CxrR7nFzbLlBKvRe4GLhWHy5EKdfy2EzCfIFakfo7NBp4VSk1nDxcS0msuig1BugOYI3W+sftdv0buD718/XAg4WOra/RWn9Raz1aaz0eM+DyKa31tcDTwBWph8m17AKtdQ2wQyk1LbXpHOBN5H2Zi+3AfKVUOPX7fvBayvuye7K9F/8NvCc1C2s+0Niuy1BkoJS6ADOE4m1a60i7Xf8G3qmUCiqlJmAGXr/sRYx9gdb6Da31MK31+NTfoZ3AvNTnabffl1J5vYuUUqcBi4E3ODwu6BbMOKt7gbHANuAqrXWmQXIiA6XUmcBntdYXK6UmYlqwBgOvAe/WWsc8DK9PUEqdgJkEEAA2AzdgvjTJ+/IYKaW+DlyN6WZ5DXg/ZnyFvC+7QCn1N+BMYCiwF7gVeIAM78VU8voLTHdrBLhBa73Mg7B7pSzX8otAEKhNPWyJ1vqDqcd/CTPuKokZqvJo52MOVJmupdb6jnb7t2JmAx/Ix/tSEishhBBCiDyRrkAhhBBCiDyRxEoIIYQQIk8ksRJCCCGEyBNJrIQQQggh8kQSKyGEEEKIPJHESgghhBAiTySxEkIIIYTIk/8P0bZ3uf2pNo0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10,7))\n", "plt.scatter(data[:,0],data[:,1], c=cluster.labels_, cmap=\"rainbow\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Desafio 4\n", "\n", "Utilizando este dataset compare com os resultados para KMeans e DBSCAN" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "## implemente sua resposta\n", "\n", "\n", "\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5" } }, "nbformat": 4, "nbformat_minor": 4 }